Photogalvanic cells: Comparative study of various synthetic dye and natural photo

sensitizer present in spinach extract

Pooran Koli*, Department of Chemistry, Jai Narain Vyas University

Jodhpur - 342033, Rajasthan, INDIA

1. Method

1.1. Chemicals

The chemicals, Sudan-I of (>95 % Assay-Purity, HIMEDIA, Mumbai, INDIA) as photosensitizer, Rhodamine B (90 % Assay-Purity, Ases Chemical Works, Jodhpur, INDIA) as photosensitizer, Fast Green FCF (LOBA Chemie Pvt. Ltd., Mumbai, INDIA) as photosensitizer, Brilliant Cresyl Blue (Ases Chemical Works, Jodhpur, INDIA) as photosensitizer, Naphthol Green B (LOBA Chemie Pvt. Ltd., Mumbai, INDIA) as photosensitizer, aqueous Spinach Extract as source of natural photo-sensitizers, Fructose (99.8 % Assay-Purity, Ases Chemical Works, Jodhpur, INDIA) as reductant, Sodium lauryl sulfate-NaLS (94 % minimum Assay-Purity, Ases Chemical Works, Jodhpur, INDIA) as surfactant, NaOH (98 % Assay-Purity, Ases Chemical Works, Jodhpur, INDIA) as alkaline medium, and Oxalic Acid (99.5 % Assay-Purity, RANKEM, New Delhi, INDIA) for standardization of NaOH with Phenolphthalein (Merck Specialities Pvt. Ltd., Mumbai, INDIA) as indicator have been used.

Tel. & Fax +91 2912614162,E-mail:poorankoli@rediffmail.com,poorankoli@yahoo.com

Characteristics of Sudan-I (SUD) dye are M.F. $C_{16}H_{12}N_2O$, M.W. 248.28, λ_{max} 476 nm, and Color Index No. 12055. Where, λ_{max} is wavelength of irradiation at which absorbance of dye is highest.

Characteristics of Rhodamine-B (RHD) dye are M.F. $C_{28}H_{31}Cl N_2O_3$, M.W. 479.02, λ_{max} (nm) 543, \Box (dm³ mol⁻¹ cm⁻¹) 60000.0, and Color Index No. 45170. Where, \Box is molar absorptivity of Rhodamine-B dye (defined as equal to absorbance of solution having one molar concentration and one centimeter thickness).

Characteristics of Fast Green FCF (FGF) dye are M.F. $C_{37}H_{34}N_2 Na_2O_{10}S_3$, M.W. 808.84, λ_{max} (nm) 622-626(high intensity band) and 427(low intensity band) in C₂H₅OH 50%,60 g/l solubility in water at 20°C, 5 g/l solubility in alcohol at 20°C and Color Index No. 42053.

Characteristics of Brilliant Cresyl Blue (BCB) dye are M.F. $C_{17}H_{20}CIN_3O$. 0.5 ZnCl₂, M.W. 385.96, λ_{max} (nm) 622, UV-Visible Spectrum [at Conc. 0.005 g/l in 50% Ethanol, E 626(+/-3 nm) >/= 40,000; E 250 (+/- 3 nm) >/= 15,000; E238 (+/- 3 nm) >/= 15,000], Solubility 1 mg/ml H₂O (Clear to opaque, blue solution) and Color Index No. 51010. Characteristics of Naphthol Green B (NGB) dye are M.F. $C_{30}H_{15}FeN_3Na_3O_{15}S_3$, M.W. 878.46 g/mol, λ_{max} (nm) 714 in water (1 cm,1 %, Aldrich) (315, 690 Gurr), (CAS number 19381-50-1 ,Color Index No. 10020, color Green. Naphthol Green B is the sodium salt of Naphthol Green Y (C.I. 10005). It can be solved in water, however not in ethanol. As an anion, it acts as acid dye.

Aqueous Spinach Extract (SPE) was used as source of natural photo-sensitizer(s). Aqueous Spinach Extract was obtained as (i) Fresh spinach leaves were washed with water, (ii) the washed and wet leaves (50 gm) were crushed in presence of a little water (10 ml) in a Jar

of electric mixer, (iii) then crushed matter was filtered with a ordinary filter paper, (iv) filtrate was left undisturbed for some time to allow sedimentation of fibrous and other matter, and (v) the transparent liquid above sediment was used as aqueous Spinach Extract for photosensitization of solution in photogalvanic cell.

Fresh spinach is convenient source of Chlorophyll a & b. The absorption band of chlorophyll-a is at 660 nm (in red region) & 430 nm (in blue) in diethylether. The absorption band of chlorophyll-b is at 650 nm (in red region) & 453 nm (in blue) in diethylether. Under the present experimental conditions, the absorption bands of crude spinach extract were observed at 680 nm (in red region) & 435 nm (in blue). Chlorophyll absorbs radiation almost over the range particularly in the blue-violet (470 nm) and red (650 nm -700 nm). The chlorophyll is the green photosynthetic pigment present in chlorophyll is due to its strong absorbencies in the red and blue regions of the electromagnetic spectrum, and because of these absorbencies the light it reflects and transmits appears green.

The solutions, Sudan-I (SUD) dye (M/500, i.e., concentration is five hundredth part of one molar), Rhodamine-B (RHD) dye, Fast Green FCF(FGF), Brilliant Cresyl Blue (BCB) dye, Naphthol Green B (NGB), Aqueous Spinach Extract-SPE (as source of natural photosensitizers), Fructose (M/100,i.e., concentration is one hundredth part of one molar), NaLS (M/10, i.e., concentration is one tenth part of one molar), NaOH (1M, i.e., concentration is one molar) and Oxalic Acid (1M, i.e., concentration is one molar) have been used. All the solutions except Sudan-I have been prepared in single distilled water,

and kept in amber colored containers to protect them from sunlight. Solution of Sudan-I has been prepared in ethyl alcohol.

1.2. Basis for chemical composition of various cells

The individual photosensitizers based Photogalvanic cells are thought to use only narrow solar spectrum for solar power generation and storage. The use of narrow spectrum (and failure to absorb broader spectrum) is cited as one of the reason for lower solar power out put of these cells. So, with aim of using relatively wider part of solar spectrum, mixed photosensitizers having λ_{max} in different spectral regions have been used. The various used photosensitizers with λ_{max} (in nm) for mixing are NGB (714 nm), FCF (622 nm), BCB (622 nm), SPE (435 nm & 680 nm), RHD (543 nm) and SUD (476 nm). First, individual photosensitizer based cells were studied to use narrow solar spectrum for solar power generation. Among them one was NGB (714 nm) based cell for use of narrow spectrum (i.e., radiations near 700 nm). Thereafter, photogalvanic cells based on mixed photosensitizers were studied with aim of use of wider solar spectrum for solar power generation. The mixing of photosensitizers was done starting from NGB (λ_{max} 714 nm) side.

The NGB (714) based Photogalvanic cells are thought to use relatively narrow spectrum (700-800 nm). The NGB (714 nm) + FCF (622 nm) +BCB (622 nm) based Photogalvanic cells were studied for using relatively broader spectrum (i.e., radiations ranging from 800-700 to 700-600 nm) for solar power generation. The NGB (714 nm) + FCF (622 nm) + BCB (622 nm) + SPE (435 nm & 680 nm), based photogalvanic cells were studied for using relatively broader spectrum (i.e., radiations ranging from 800-700 to 700-600 nm). On same pattern, some more cells were fabricated. Finally, a cell based on

NGB (714 nm) + FCF (622 nm) + BCB (622 nm) +SPE (435 nm & 680 nm) + RHD (543 nm) + SUD (476 nm) was studied for using almost whole visible region (i.e., 800-700 to 700-600 to 600-500 to 500-400 nm) for solar energy conversion and storage.

The electrical cell parameters for various individual and mixed photosensitizers are summarized in Table 2 and Fig. S5 (a,b).

1.3. Experimental set up

The experimental set up consists of a H-cell (photogalvanic cell), natural sunlight, digital pH meter-Systronics Model:335 (for measuring potential in millivolt-mV), microammeter-OSAW (for measuring current in microampere- μ A), a carbon pot log 470 K device (for changing the resistance of circuit), and a circuit key, which are connected together as shown in photogalvanic cell set –up (**Fig.S7**).

The photogalvanic cell is made of glass tube of H-shape whose wall is externally blackened, but a window is left in one arm. The arm with window acts as illuminated chamber and other arm without window act as dark chamber¹³. This tube is filled with known amount of the solutions of photosensitizer, reductant, NaLS and Sodium hydroxide. The total volume of the solution is always kept 25 ml making up by singly distilled water. A platinum electrode (as negative terminal) is dipped in illuminated chamber against window and a Saturated Calomel Electrode-SCE of combination electrode (as positive terminal) is immersed in dark chamber. The terminals of the electrodes are connected to a digital pH meter.

.0	T hotosensitizer (s)	• arradon of potential (m •) with thirt(mm.)						
Cell N	with λ_{max} (nm)							
1.	NGB (714)	Time Potential	0 582	11 625 27	26 644	63 738 72	65 938 V _{max}	70 925 V _{oc}
2.	FCF(622)	Time	0	37 (25	50 (42	12	80 071 V	85 0(0 V
3.	BCB(622)	Time Potential	585 0 613	623 10 624	643 20 687	830 30 701	971 V _{max} 33 1045 V _{max}	960 V _{oc} 38 1040 V _{oc}
4.	SPE(435 & 680)	Time	0	34 634	37	59 642	68 950 V	75 038 V
5.	RHD(543)	Time Potential	0 521	17 559	030 22 578	28 899	30 1012 V _{max}	35 1007 V _{oc}
6.	SUD(476)	Time Potential	0 596	14 616	18 620	20 928	21 1020 V _{max}	26 1014 V _{oc}
7.	NGB(714),FCF(622)	Time Potential	0 572	10 587	40 633	48 695	53 1007 V _{max}	57 1000 V _{oc}
8.	NGB(714),FCF(622), SPE (435 & 680)	Time Potential	0 550	12 575	25 606	40 725	44 980 V _{max}	55 973 V _{oc}
9.	NGB(714),FCF(622), RHD(543)	Time	0	15	35	40	45	50
		Potential	556	573	592	611	975 V _{max}	970 V _{oc}
10.	NGB(714),FCF(622), BCB(622),SPE(435& 680),RHD(543), SUD(476)	Time Potential	0 541	5 560	9 602	12 657	15 1057 V _{max}	22 1040 V _{oc}
11.	NGB(714)	Time Potential	0 520	5 524	13 575	39 723	44 1040 V _{max}	50 1040 V _{oc}
12.	NGB(714),FCF(622), BCB(622)	Time Potential	0 591	15 640	25 692	35 744	38 1055 V _{max}	42 1052 V _{oc}
13.	NGB(714),FCF(622), BCB(622),SPE(435 & 680)	Time	0	13	28	30	31	32
		Potential	570	595	645	937	1002 V_{max}	999 V _{oc}
14.	NGB(714),FCF(622), BCB(622),SPE(435& 680) RHD (543)	Time Potential	0 517	16 574	43 612	44 992	48 1067 V _{max}	52 1060 V _{oc}
15.	NGB(714),FCF(622), BCB(622),SPE(435& 680),RHD(543), SUD(476)	Time Potential	0 492	7 584	10 927	16 981	23 1008 V _{max}	26 1004 V _{oc}

Table S1. Variation of potential with time.Photosensitizer(s)Variation of potential (mV) with time(min.)

Cell No.	Photosensitizer(s) with λ_{max} (nm)	Study of cell performance [Change of current (μA), potential (mV) and power(μW) with time]							
1.	NGB (714)	Time	0	40	120	140 $t_{0.5}$	147	152	
		Current	420	440	440	435	300	300	
		Potential	486	363	325	314	339	321	
		Power	204.1	159.7	156.2	136.5	101.7	96.3	
2.	FCF(622)	Time	0	10	15	27 t _{0.5}	34	38	
		Current	420	350	340	310	300	300	
		Potential	443	399	345	312	309	298	
2		Power	186	139.6	117.3	96.7	92.7	89.4	
3.	BCB(622)	Time	0	15	30	45	63 $t_{0.5}$	68	
		Detential	450	430	400 261	360	320	320	
		Power	216.9	183.6	144.4	125.6	334 106.8	98.8	
4.	SPE(435 & 680)	Time	0	10	20	30	44	50 $t_{0.5}$	
		Current	600	570	530	490	450	450	
		Potential	440	411	349	313	302	291	
		Power	264	234.2	184.9	153.3	135.9	130.9	
5.	RHD(543)	Time	0	5	9	15	26 t _{0.5}	31	
		Current	600	570	550	490	430	410	
		Potential	454	440	410	357	313	310	
6		Power	272.4	250.8	225.5	174.9	134.5	127.1	
6.	SUD(476)	Time	0	6 570	12	18	$30 t_{0.5}$	34 410	
		Potential	528	370 486	330 411	480 304	430 251	410 233	
		Power	316.8	277	217.8	145.9	107.9	255 95.5	
7.	NGB(714),FCF(622)	Time	0	8	12	15	$17 t_{0.5}$	22	
		Current	520	550	540	510	420	340	
		Potential	518	416	402	381	315	240	
		Power	269.3	228.8	217	194.3	132.3	81.6	
8.	NGB(714),FCF(622),	Time	0	6	54	84	$125 t_{0.5}$	128	
	SPE (435 & 680)	Current	520	425	400	390	320	300	
		Potential	478	523	465	455	370	350	
_		Power	248.5	222.2	186	177.4	118.4	105	
9.	NGB(714),FCF(622),	Time	0	5	10	20	$30 t_{0.5}$	34	
	NDD(343)	Current	540	540	530	500	380	5/0	
		Potential	470	440	389	370 195	329 125	318	
		rower	233.ð	<i>431.</i> 0	∠U0.1	100	123	11/./	

 Table S2. Change of power with time (Study of cell performance)

10.	NGB(714),FCF(622), BCB(622),SPE(435& 680),RHD(543), SUD(476)	Time Current	0 660	4 630	9 580	14 510	$\begin{array}{c} 19 \ t_{0.5} \\ 470 \end{array}$	24 460
		Potential	460	400	367	303	320	301
		Power	303.6	252	212.8	155.8	150.4	138.4
11.	NGB(714)	Time	0	40	100	180	260 t _{0.5}	270
		Current	800	780	760	610	560	560
		Potential	528	493	423	411	376	363
10		Power	422.4	384.5	321.4	250.7	210.5	203.2
12.	NGB(714),FCF(622), BCB(622)	Time	0 850	14 780	25 710	35 640	51 $t_{0.5}$	60 580
		Potential	511	467	401	379	361	341
		Power	434.3	364.2	284.7	242.5	216.6	197.7
13.	NGB(714),FCF(622), BCB(622),SPE(435 & 680)	Time	0	10	22	26	32 $t_{0.5}$	37
		Current	1000	930 422	800	810	/10	080
		Potential	404	422	383	332	323	519
		Power	464	392.46	331.1	268.9	229.3	216.9
14.	NGB(714),FCF(622) ,BCB(622),SPE(435 & 680),RHD (543)	Time	0	4	8	10	$14 t_{0.5}$	19
		Current	850	800	730	680	600	580
		Potential	477	436	401	342	333	313
		Power	405.4	347.2	292.7	232.5	199.8	181.5
15.	NGB(714),FCF(622) ,BCB(622),SPE(435 &680),RHD(543), SUD(476)	Time	0	5	12	20	31 t _{0.5}	0
		Current Potential	750 463	690 422	610 377	560 345	530 326	750 463
		Power	347.2	291.1	229.9	193.2	172.7	347.2

Fig. S 1. Mechanism of photogeneration of current in photogalvanic cell. SCE, Saturated Calomel Electrode; D, Dye (Photosensitizer); D⁺, Oxidized form of Dye; R⁺, Oxidized form of reductant ; e⁻, Electron.

Fig. S2(a,b,c,d).Variation of potential with time,1.NGB (714 nm),2.FCF(622 nm),3. BCB(622 nm),4.SPE(435 nm & 680 nm),5.RHD(543 nm),6. SUD(476 nm),7. NGB,FCF,8.NGB,FCF,SPE,9. NGB,FCF,RHD ,10. NGB,FCF,BCB,SPE,RHD, SUD,11.NGB,12.NGB,FCF,BCB,13.NGB,FCF,BCB,SPE,14.NGB,FCF,BCB,SPE,RH D,15. NGB,FCF,BCB,SPE,RHD,SUD.

Fig. S3(a,b)Variation of potential with current(i-V characteristic of the cell), 1.NGB (714 nm),2.FCF(622 nm),3.BCB(622 nm),4.SPE(435 nm & 680 nm),5.RHD(543nm),6.SUD(476nm),7.NGB,FCF,8.NGB,FCF,SPE,9.NGB,FCF,RHD, 10.NGB,FCF,BCB,SPE,RHD,SUD,11.NGB,12.NGB,FCF,BCB,13.NGB,FCF,BCB,SP E,14.NGB,FCF,BCB,SPE,RHD,15. NGB,FCF,BCB,SPE,RHD,SUD.

Fig. S3(c,d)Variation of potential with current(i-V characteristic of the cell), 1.NGB (714 nm),2.FCF(622 nm),3.BCB(622 nm),4.SPE(435 nm & 680 nm),5.RHD(543nm),6.SUD(476nm),7.NGB,FCF,8.NGB,FCF,SPE,9.NGB,FCF,RHD, 10.NGB,FCF,BCB,SPE,RHD,SUD,11.NGB,12.NGB,FCF,BCB,13.NGB,FCF,BCB,SP E,14.NGB,FCF,BCB,SPE,RHD,15. NGB,FCF,BCB,SPE,RHD,SUD.

Fig.S4(a,b). Study of cell performance (i)Power vs Time(1-10,bold& unitalic),(ii) CurrentvsTime(110,unbold&italic).1.NGB(714nm),2.FCF(622nm),3.BCB(622nm),4.S PE(435nm&680nm),5.RHD(543nm),6.SUD(476nm),7.NGB,FCF,8.NGB,FCF,SPE,9. NGB,FCF,RHD,10.NGB,FCF,BCB,SPE,RHD,SUD.

Fig.S4(c).Study of cell performance (i) Power vs Time (11-15, bold& unitalic), (ii) CurrentvsTime(11-15,unbold&italic). 11.NGB,12.NGB,FCF,BCB,13.NGB,FCF,BCB,SPE,14.NGB,FCF,BCB,SPE,RHD,15. NGB,FCF,BCB,SPE,RHD,SUD.

Fig. S5(a). Power at power point for various cells.

Fig. S5.(b). Power at power point for various cells.

Fig.S6(a)Structure of Sudan-I

Fig. S6(b)Structure of Brilliant Cresyl Blue (M.W. 385.96).

Fig. S7: Photogalvanic cell set–up. A, Micro-ammeter; K, Key; R, Resistance;; V, Digital pH meter.