Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014 ## **ELECTRONIC SUPPLEMENTARY INFORMATION** ## Switching the thermodynamics of MgH₂ nanoparticles through polystyrene stabilisation and oxidation Eki J.Setijadi, 1,2 Cyrille Boyer, 2 and Kondo-Francois Aguey-Zinsou 1,* E-mail: f.aguey@unsw.edu.au,Tel: +61 (0)2 938 57970, Fax: +61 (0)2 938 55966 ¹ MERLin group, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, Australia. ² Centre for Advanced Macromolecular Design, School of Chemical Engineering, The University of New South Wales, Sydney NSW 2052, Australia **Fig. S1** – (a) TGA profile of PSTN and (b) associated gas evolution as followed by MS for selected m/z. Heating rate $10C.min^{-1}$ under an Ar flow of $20 mL.min^{-1}$. Complete decomposition of the polymer occurred between 330 and 450 °C. Fig. S2. PCI corresponding to the absorption of hydrogen in MgH₂/C before and after oxidation. Fig. S3. PCI corresponding to the absorption of hydrogen in $MgH_2/PSTN$ before and after oxidation. **Fig. S4**. Kissinger plots for MgH₂/C and MgH₂/PSTN before and after oxidation. These were determined from the hydrogen desorption profiles of the materials after PCI measurements. **Fig. S5**. Hydrogen desorption kinetics measured before and after performing PCI measurements during 1 week for MgH_2/C and $MgH_2/PSTN$, as synthesised and after oxidation for 24 h in air. The desorption kinetics were measured at 300 °C. The hydrogen desorption kinetics were found to be stable even after PCI measurements.