Electronic Supplementary Information (ESI)

Design, synthesis and biocidal effect of novel amine *N*-halamine microspheres based on 2,2,6,6-tetramethyl-4-piperidinol as promising antibacterial agents

Chenghao Li,^a Linyan Xue,^a Qian Cai,^a Sarina Bao,^a Tianyi Zhao,^b Linghan Xiao,^c Ge

Gao,^b Chokto Harnoode^a and Alideertu Dong*^a

^aCollege of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China

^bCollege of Chemistry, Jilin University, Changchun 130021, People's Republic of China

^cCollege of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China

*Corresponding authors: Alideertu Dong

E-mail address: dongali@imu.edu.cn; Tel: +86 471 4992982.

Fig. S1. Mass spectrogram of ATMP

Fig. S2. Particle size distribution of poly(ATMP-co-MMA) microspheres with different copolymerization period.

<i>N</i> -halamine type	Dissociation reaction	Dissociation constant ^a	
Imide	$ \overbrace{}^{0}_{N-CI} \xrightarrow{H_{2}O} \overbrace{}^{0}_{N-H} $	< 10 ⁻⁴	
Amide	$ \bigvee_{R}^{O} \bigvee_{H_2O} \bigvee_{R}^{O} \bigvee_{N-H}^{O} $	< 10 ⁻⁹	
Amine	R H_2O R $N-H$ R	< 10 ⁻¹²	

Table S1. Dissociation constant of different N-halamine in aqueous solution

^aDissociation constant was from references.¹⁻⁴

Sample	Copolymerization	Particle size (nm) ^a		Surface area ^b
	period (h)	Size distribution	Average size	(m ² ·g ⁻¹)
S1	1	20-90	50.7	118.3
S2	2	150-210	181.8	33.0
S3	3	170-240	201.9	29.7
S4	4	190-250	227.5	26.4
S5	5	210-260	239.2	25.1
S6	6	210-280	244.5	24.5

 Table S2. Particle size and surface area characteristics of poly(ATMP-co-MMA) microspheres formed with

 different copolymerization period

^aParticle size was determined by TEM images.

^{*b*}The surface area was calculated based on the assumption that the particles are non-porous spheres with density of 1.0 g·cm⁻³. The calculation was performed according to the following equation: $S = 6(D \cdot d)^{-1}$, wherein S is the surface area (m²·g⁻¹); D is the diameter (µm); and d is the density (g·cm⁻³) of the particles.⁵

Table S3. Minimum inhibitory concentration (MIC) of different products against S. aureus, B. subtilis, E. coli, and

	MIC (mg/mL)				
Sample	Gram-positive bacteria		Gram-negative bacteria		Reference
	S. aureus	B. subtilis	E. coli	P. aeruginosa	
PSA@Fe ₃ O ₄ @SiO ₂ - <i>N</i> -halamine ^a	80	-	-	60	6
HMNH NPs ^b	160	160	160	80	7
BAMNH NPs ^c	80	80	80	40	7
H-NHFS NPs ^d	160	-	-	80	8
BA-NHFS NPs ^e	40	-	-	40	8
Amine N-halamine microspheres	10	-	10	-	This study

P. aeruginosa

^{*a*}Amide *N*-halamine-immobilized PSA@Fe₃O₄@SiO₂ nanoparticles.

^bHydantoin-structural magnetic amide N-halamine nanoparticles.

^cBarbituric acid-based magnetic imide *N*-halamine nanoparticles.

^dHydantoin-originated amide *N*-halamine-functionalized silica nanoparticles.

^eBarbituric acid-originated imide *N*-halamine-functionalized silica nanoparticles.

Soaking period (h) ^a	Oxidative chlorine (%) ^b	Reduction (%) ^c
0	1.17	0
6	1.16	0.85
12	1.16	0.85
18	1.14	2.56
24	1.11	5.13
30	1.10	5.98
36	1.08	7.69
42	1.08	7.69
48	1.07	8.55

Table S4. Oxidative chlorine content of amine N-halamine microspheres with different soaking period

^aPeriod since initial soaking.

^bOxidative chlorine content was determined by the iodometric/thiosulfate titration after a certain soaking age.

^cReduction percentage of oxidative chlorine after a certain soaking age.

Supplementary References

- 1 K. Tan and S. K. Oberndorf, J. Membrane Sci., 2007, 305, 287-298.
- 2 A. Akdag, S. Okur, M. L. McKee and S. D. Worley, J. Chem. Theory Comput., 2006, 2, 879-884.
- 3 K. Barnes, J. Liang, R. Wu, S. D. Worley, J. Lee, R. M. Broughton and T. S. Huang, *Biomaterials*, 2006, 27, 4825-4830.
- 4 O. Gutman, M. Natan, E. Banin and S. Margel, Biomaterials, 2014, 35, 5079-5087.
- 5 M. Omer-Mizrahi and S. Margel. J. Colloid Interface Sci., 2009, 329, 228-234.
- 6 A. Dong, S. Lan, J. Huang, T. Wang, T. Zhao, L. Xiao, W. Wang, X. Zheng, G. Gao and Y. Chen, ACS Appl. Mater. Interfaces, 2011, 3, 4228-4235.
- 7 A. Dong, Y. Sun, S. Lan, Q. Wang, Q. Cai, X. Qi, Y. Zhang, G. Gao, F. Liu and C. Harnoode, ACS Appl. Mater. Interfaces, 2013, 5, 8125-8133.
- 8 A. Dong, M. Xue, S. Lan, Q. Wang, Y. Zhao, Y. Wang, Y. Zhang, G. Gao, F. Liu and C. Harnoode, *Colloid. Surf. B*, 2014, **113**, 450-457.