A First principle study of H₂S adsorption and decomposition on Ge (100) surface

Tsung-Fan Teng^{†,‡}, Santhanamoorthi Nachimuthu[†], Wei-Hsiu Hung[‡], Jyh-Chiang Jiang^{†*}

[†] Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

[‡] Department of Chemistry, National Taiwan Normal University, Taipei 116,

Taiwan

Parameters	Pseudo- potentials					
	PAW-GGA	PAW-PBE	US-GGA			
lattice constant (Å)	5.79	5.76	5.77			
deviation (%) ^a	2.33	1.9	2.0			

Table S1. Calculated lattice constant of bulk Ge with different pseudo- potentials.

^a The definition of deviation is $\frac{|\text{calaulated value} - \text{experimental value}|}{|\text{experimental value}|} \times 100\%$, in which

the experimental value is 5.43 Å.

	US(300 eV)		US(450 eV)		PBE(300eV)	
System	Ε	E _b	Ε	E _b	Ε	E _b
H_2S_{ad}	-351.3594		-351.3914		-306.4971	
LM1 _{III}	-351.9863		-351.8528		-306.7356	
TS1 _{III}	-351.3099	0.050	-351.2892	0.102	-306.3369	0.1602
LM1 _{II}	-351.7965		-351.9285		-306.7278	
TS1 _{II}	-350.9179	0.441	-350.9026	0488	-305.9288	0.5683
LM1 _I	-351.9425		-351.7829		-306.6394	
TS1 _I	-350.8532	0.506	-350.8605	0.530	-305.7885	0.7086

Table S2. The total energy (E in eV) and barriers for the respective transition states (E_b in eV) for the adsorption of H_2S on a clean Ge(100) surface calcaulted at different functionals and different cutoff energy values.

	method	d _D (Å)	heta (deg)	
Ge(100)-4x2	US-this work	2.54	20.7	
	LDA ³⁴	2.41	19.0	
	X-ray ³⁵	2.44	21.0	
	STM ³⁶	2.51	19.7	

Table S3. Calaulated dimer bond length (d_D) and dimer tilting angle (θ) for a clean Ge(100) surface, compared with results from other calculations and experimental data.

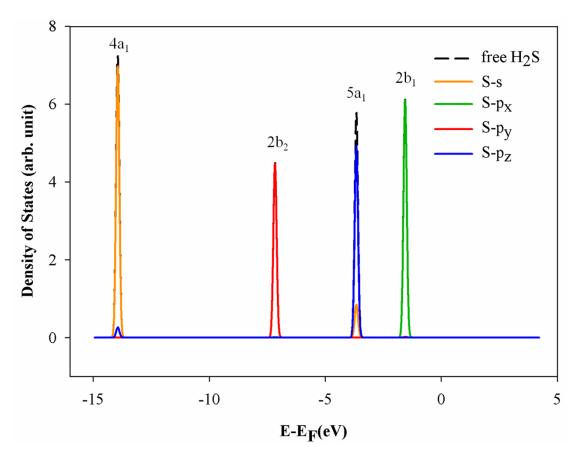
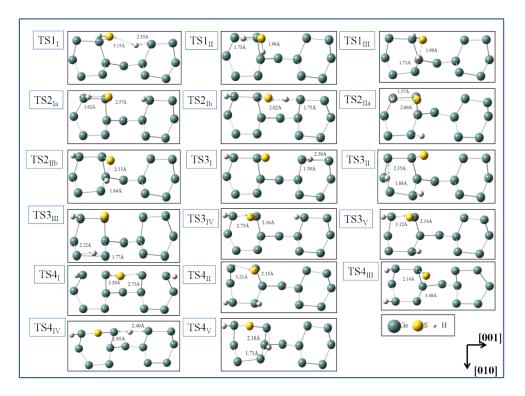



Figure S1. PDOS of gaseous H₂S.

•

Figure S2. Top view of all transition states of the reactions for H_2S on Ge(100) surface. (a) $TS1_{II}$, (b) $TS1_{II}$, (c) $TS1_{III}$, (d) $TS2_{I-a}$, (e) $TS2_{I-b}$, (f) $TS2_{II-a}$, (g) $TS2_{II-b}$, (h) $TS3_{I}$, (i) $TS3_{II}$, (j) $TS3_{III}$, (k) $TS3_{IV}$, (l) $TS3_{V}$, (m) $TS4_{I}$, (n) $TS4_{II}$, (o) $TS4_{III}$, (p) $TS4_{IV}$, (q) $TS4_{V}$.