Electronic Supplementary Information

In Situ Synthesis of Ultra-small Platinum Nanoparticles Using Water Soluble Polyphenolic Polymer with High Catalytic Activity

Tanmoy Maji, Sanjib Banerjee, Mrimoy Biswas and Tarun K. Mandal*

Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India

Catalysis of borohydride reduction of 4-nitrophenol by colloidal Bare-Pt NPs

At first, 2 mL of the as prepared colloidal Bare-Pt NPs (5.7x10⁻⁴ mmol) taken into a 3 mL quartz cuvette followed by the addition of 0.8 mL water, and an aqueous 4-NP solution (0.1 mL, 3 mM) to that solution. The catalytic reduction of 4-NP was then studied in a spectrophotometer at 25 °C with a stirring speed of 500 rpm by final addition of an aqueous NaBH₄ solution (0.1 mL; 300 mM).

Catalysis of borohydride reduction of 4-nitrophenol by colloidal PVPh-Pt_{BH4}- nanocatalyst

First a stock aqueous colloidal Pt NPs suspension was prepared by dilution of 0.5 mL assynthesised colloidal Pt NPs to 2.5 mL with Milli-Q water. From this, 2 mL (5.1x10⁻⁴ mmol) solution was taken into a 3 mL quartz cuvette. To that solution 0.8 mL water, and an aqueous 4-NP solution (0.1 mL, 3 mM) were added and placed the cuvette in a spectrophotometer at 25 °C with stirring at a speed of 500 rpm. To this reaction mixture, an aqueous NaBH₄ solution (0.1 mL; 300 mM) was finally added to study the reduction of 4-NP.

Figure S1. TEM images of (A) colloidal Bare Pt NPs (B) PVPh-Pt_{BH4} nanoparticles. Insets in each panel showed the HRTEM of single Pt nanoparticle

Figure S2. Energy dispersive X-ray (EDX) analysis of (A) PVPh-Pt_{1.3} (B) PVPh-Pt₅.

Figure S3. Plot showing log-normal distributions of the sizes of the Pt NPs (PVPh-Pt₅) from DSL measurements.

Figure S4. Plot showing log-normal distributions of the sizes of the Pt NPs (PVPh-Pt_{1.3}) from DSL measurements

Figure S5. Time-dependent absorption spectra of the 4-NP reduction in the presence of PVPh-Pt_{1.3} at (A) 30 °C (B) 40 °C

Figure S6. Time-dependent absorption spectra of the 4-NP reduction in the presence of PVPh-Pt₅ at (A) 30 °C (B) 40 °C

Figure S7. Time-dependent absorption spectra of the 4-NP reduction at 25 °C in the presence of

(A) colloidal bare Pt NPs (B) PVPh-Pt_{BH4}-

Figure S8. Plots of ln A (A = absorbance at 400 nm of p-nitrophenolate ion) versus time for the reduction of p-nitrophenol at 25 °C using catalyst (A) ▲ PVPh-Pt_{1.3} (B) ● PVPh-Pt_{BH4}- (C) Colloidal bare Pt NPs

Figure S9. ¹H NMR spectrum of ethyl benzene. ¹H NMR (500 MHz, CDCl₃, δ ppm): 1.27 (t, 3H,

Figure S10. ¹³C NMR spectrum of ethyl benzene. ¹³C NMR (500 MHz, CDCl₃, δ ppm): 15.70 (a-CH₃), 29.02 (b-CH₂), 125.71 (e-CH), 127.9 (d-CH), 128.4 (c-CH), 144.4 (f-CH) (The ¹³C NMR peak at δ 77.26 ppm corresponds to CHCl₃ present in CDCl₃).

Figure S11. ¹H NMR spectrum of aniline. 1H NMR (500 MHz, CDCl₃, δ ppm): 3.36 (2H, Nh₂), 6.70 (d, 2H), 6.78 (t, 1H), 7.17 (t, 2H) (The ¹H NMR peak at δ 7.26 ppm corresponds to CHCl₃ present in CDCl₃).

Figure S12. ¹³C NMR spectrum of aniline. ¹³C NMR (500 MHz, CDCl₃, δ ppm): 115.65 (b-CH), 119.09 (e-CH), 129.83 (d-CH), 146.92 (a-CH) (The ¹³C NMR peak at δ 77.26 ppm corresponds to CHCl₃ present in CDCl₃).

Figure S13. Mass spectra of GC-MS of ethyl benzene obtained after removal of catalyst.

Figure S14. Mass spectra of GC-MS of aniline obtained after removal of catalyst.

Figure S15. Time-dependent absorption spectra of the 4-NP reduction in the presence of PVPh-Pt_{1.3} at (A) 2nd cycle, (B) 3rd cycle and (C) 4th cycle of catalysis.

Figure S16. Plots of ln A (A = absorbance at 400 nm of p-nitrophenolate ion) versus time for the reduction of p-nitrophenol sample at 25 °C using PVPh-Pt_{1.3} for (A) $\bigvee 1^{st}$ cycle (B) $\blacksquare 2^{nd}$ cycle (C) $\bullet 3^{rd}$ cycle (D) $\blacktriangle 4^{th}$ cycle of catalysis

Figure S17. Plot showing the variation in normalized rate constant in different cycles of the borohydride reduction of p-nitrophenol using $PVPh-Pt_{1,3}$ sample.

Figure S18. TEM image of the sample PVPh-Pt_{1.3} after 3^{rd} cycle of the catalysis