Electronic Supplementary Information

A Facile Green One-pot Route Towards Three-Dimensional Graphene-

Based micropores carbon composites Frameworks for High-Performance

Electrochemical Capacitive Energy Storage

Zehui Zhang, Peiyi Wu *

State Key Laboratory of Molecular Engineering of Polymers and Department of

Macromolecular Science and Laboratory of Advanced Materials, Fudan University,

Shanghai 200433, P.R. China

E-mail: peiyiwu@fudan.edu.cn.

Figure S1. Digital photographs of the samples.

Figure S2. Isotherm plot of NC, GA-NC-0.5, GA-NC-1, GA-NC-1.5.

Figure S3. Pore size distribution plots obtained using the DFT method of the GA-NC-1.

Figure S4. Elemental mapping images of GA-AC-1. (a) EDX spectrum suggest the homogeneous distribution of N and C in GA-AC-1. (b) Typical scanning electron microscopy image and corresponding elemental mapping images of (c) nitrogen and (d) carbon in the selected area.

Table S1. Element analysis of the chiotsan and GA-NC. The increase of carbon content indicates the sufficient carbonization during the high temperature treatment.

Sample	C (%)	H (%)	N (%)	O (Calculated) (%)
--------	-------	-------	-------	--------------------

chiotsan	41.33	7.95	7.78	42.84
GA-NC	74.65	1.67	6.30	17.38

Figure S5. Raman spectra of GA-NC.

Figure S6. FTIR spectrum of GA-NC.

Figure S7. a), c), e) Cyclic voltammetry curves obtained at different scan rates for NC, GA-NC-0.5, GA-NC-1.5, respectively. b), d), f) Galvanostatic charge/discharge curves of NC, GA-NC-0.5, GA-NC-1.5 supercapacitor under different constant currents, respectively.

 Table S2. Comparison of properties of various carbon-based materials as

 supercapacitors electrode materials

Materials	Specific surface area (m ² g ⁻¹)	Specific capacity (F g ⁻¹)
Activated carbons ¹	1000~2000	50~150
Porous carbon spheres ²	757.3	260
Mesoporous Carbon ³	185	70~110
N-carbon nanofiber ⁴	312	~200
Hydrothermal carbon ⁵	109	154
Various Pollens ⁶	1600~3000	~190
Hydrothermal carbon ⁷		300
N-graphene ⁸		~100

References

(1) E. Frackowiak, F.Béguin, Carbon 2001, 39, 937-950.

(2) J. Wang, L. Shen, B.Ding, P. Nie, H. Deng, H. Dou,; X. Zhang, *RSC Adv.* **2014**, *4*, 7538-7544.

(3) D. Saha, Y. Li,; Z. Bi, J. Chen, J. K. Keum, D. K. Hensley, H. A. Grappe, H. M.Meyer, S. Dai,; M. P. Paranthaman, A. K. Naskar, *Langmuir* 2014, *30*, 900-910.
(4) L.-F. Chen, Z.-H. Huang, H.-W. Liang, W.-T. Yao, Z.-Y. Yu, S.-H. Yu, *Energ. Environ. Sci.* 2013, *6*, 3331-3338.

(5) W. Si, J. Zhou, S. Zhang, S. Li, W. Xing, S. Zhuo, *Electrochim. Acta* 2013, 107, 397-405.

(6) L. Zhang, F. Zhang, X. Yang, K. Leng, Y. Huang, Y. Chen, *Small* **2013**, *9*, 1342-1347.

(7)C. Falco, J. M. Sieben, N. Brun, M. Sevilla, T. van der Mauelen, E. Morallón, D.Cazorla-Amorós, M.-M. Titirici, *ChemSusChem* 2013, *6*, 374-382.

(8) P. Chen, J.-J. Yang, S.-S. Li, Z. Wang, T.-Y. Xiao, Y.-H. Qian, S.-H. Yu, *Nano Energ.* **2013**, *2*, 249-256.