Functional Tuning of Phenothiazine-Based Dyes by Benzimidazole Auxiliary

Chromophore: an Account on Optical and Photovoltaic Studies[†]

Govardhana Babu Bodedla,^a K. R. Justin Thomas,^{*a} Chun-Ting Li^b and Kuo-Chuan Ho^b

^a Organic Materials Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee,

Roorkee – 247 667, *India*

^b Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.

Electronic Supplementary Information

Fig. S1 Absorption spectra of GJ2 recorded in different solvents.	S3
Fig. S2 Absorption spectra of GJ3 recorded in different solvents.	S3
Fig. S3 Absorption spectra of GJ4 recorded in different solvents.	S4
Fig. S4 Absorption spectra of GJ5 recorded in different solvents.	S4
Fig. S5 Absorption spectra of GJ1 recorded in THF before and after addition of TFA or	S5
TEA.	
Fig. S6 Absorption spectra of GJ3 recorded in THF before and after addition of TFA or	S5
TEA.	
Fig. S7 Absorption spectra of GJ4 recorded in THF before and after addition of TFA or	S6
TEA.	
Fig. S8 Absorption spectra of GJ5 recorded in THF before and after addition of TFA or	S6
TEA.	
Fig. S9 ¹ H NMR spectra of 2 .	S 7
Fig. S10 13 C NMR spectra of 2.	S 8
Fig. S11 ¹ H NMR spectra of 6.	S9
Fig. S12 13 C NMR spectra of 6.	S10
Fig. S13 ¹ H NMR spectra of 3.	S11
Fig. S14 ¹³ C NMR spectra of 3.	S12
Fig. S15 ¹ H NMR spectra of 4.	S13
Fig. S16 ¹³ C NMR spectra of 4.	S14
Fig. S17 ¹ H NMR spectra of 5.	S15
Fig. S18 ¹³ C NMR spectra of 5.	S16
Fig. S19 ¹ H NMR spectra of 8.	S17
Fig. S20 13 C NMR spectra of 8.	S18
Fig. S21 ¹ H NMR spectra of 10.	S19
Fig. S22 13 C NMR spectra of 10.	S20
Fig. S23 ¹ H NMR spectra of GJ1.	S21
Fig. S24 ¹³ C NMR spectra of GJ1.	S22
Fig. S25 ¹ H NMR spectra of GJ2.	S23
Fig. S26 ¹³ C NMR spectra of GJ2.	S24

Fig. S27 ¹ H NMR spectra of GJ3.	S25
Fig. S28 ¹³ C NMR spectra of GJ3.	S26
Fig. S29 ¹ H NMR spectra of GJ4.	S27
Fig. S30 ¹³ C NMR spectra of GJ4.	S28
Fig. S31 ¹ H NMR spectra of GJ5.	S29
Fig. S32 ¹³ C NMR spectra of GJ5.	S30
Table S1 Cartesian coordinates for the optimized structure of GJ1.	S31
Table S2 Cartesian coordinates for the optimized structure of GJ2.	S33
Table S3 Cartesian coordinates for the optimized structure of GJ3.	S35
Table S4 Cartesian coordinates for the optimized structure of GJ4.	S37
Table S5 Cartesian coordinates for the optimized structure of GJ5.	S39

Fig. S1 Absorption spectra of GJ2 recorded in different solvents.

Fig. S2 Absorption spectra of GJ3 recorded in different solvents.

Fig. S3 Absorption spectra of GJ4 recorded in different solvents.

Fig. S4 Absorption spectra of GJ5 recorded in different solvents.

Fig. S5 Absorption spectra of GJ1 recorded in THF before and after addition of TFA or TEA.

Fig. S6 Absorption spectra of GJ3 recorded in THF before and after addition of TFA or TEA.

Fig. S7 Absorption spectra of the dye GJ4 recorded in THF before and after addition of TFA or

TEA.

Fig. S8 Absorption spectra of the dye GJ5 recorded in THF before and after addition of

TFA or TEA.

Fig. S10 ¹³C NMR spectra of 2.

GB-1-26 1H

LLL44444000

15 01 88

Fig. S13 ¹H NMR spectra of 3.

Fig. S14 ¹³C NMR spectra of 3.

Fig. S16 ¹³C NMR spectra of 4.

Fig. S17 ¹H NMR spectra of 5.

1.00 Hs 1.40

Fig. S24 ¹³C NMR spectra of GJ1.

GJ-2 C13

Fig. S26 ¹³C NMR spectra of GJ2.

ettion Parametaine 3512318 3.44 Ras Hallon He-metaine 2000 He-metaine 2000 He-1.000 He-1.000 He-1.000 He-1.000 He-1.000 He-1.000 He-1.000 He-1.000 He-2.000 He-2.0000 He-2.000 He-2.00

GJ-3 C13

Fig. S28 ¹³C NMR spectra of GJ3.

Table S1 Cartesian coordinates for the optimized structure of GJ1.

At.	No. X	Y	Z
6	-3.556108	-0.107283	0.167558
6	-2.450337	-0.602089	0.885706
6	-1.226231	0.053696	0.867482
6	-1.040989	1.225870	0.102061
6	-2.134849	1.698078	-0.643014
6	-3.367134	1.056840	-0.596366
6	1.380298	1.069012	0.047495
6	1.454942	-0.116973	0.804942
6	2.579763	-0.929924	0.752471
1	2.612616	-1.854536	1.318401
6	3.695643	-0.571241	-0.024178
6	3.620233	0.603683	-0.785554
6	2.477545	1.400085	-0.760154
1	-2.554805	-1.491284	1.499345
1	-2.022375	2.562984	-1.286862
1	-4.181052	1.447675	-1.200137
1	4.438825	0.892657	-1.433949
1	2.442920	2.284450	-1.386385
16	0.106778	-0.523517	1.899717
7	0.213283	1.868162	0.100123
6	4.840527	-1.493715	-0.040189
7	4.711285	-2.782167	0.199374
7	6.160720	-1.135647	-0.339099
6	5.974654	-3.322013	0.064700
6	6.904924	-2.313770	-0.273891
6	6.736044	0.164165	-0.480793
6	6.404293	-4.647460	0.215239
6	8.264860	-2.576779	-0.448969
6	7.376192	0.507947	-1.676346
6	6.691030	1.074287	0.580674
1	5.692238	-5.425826	0.471572
6	7.755289	-4.920736	0.032489
6	8.671794	-3.899766	-0.291849
1	8.973243	-1.791501	-0.693426
1	7.399940	-0.207504	-2.492820
6	7.967246	1.765338	-1.808532
6	7.272085	2.333515	0.435461
1	6.203757	0.789682	1.507828
1	8.116336	-5.939446	0.143372
1	9.721205	-4.149316	-0.422027
1	8.464554	2.029588	-2.737554
6	7.912782	2.681094	-0.756137
1	7.233230	3.039931	1.259909
1	8.369925	3.660773	-0.862734

6	0.300232	3.292875	-0.243181
1	0.591591	3.437904	-1.295273
6	1.232756	4.078382	0.689836
6	1.273208	5.571024	0.335667
1	2.247594	3.665986	0.652856
1	0.880151	3.945404	1.720689
6	2.183763	6.377427	1.267186
1	1.613939	5.691956	-0.702651
1	0.255335	5.984433	0.372168
1	1.847480	6.306395	2.308451
1	3.216539	6.010478	1.226746
1	-0.704662	3.705823	-0.138911
6	-4.838926	-0.805234	0.212660
6	-5.078867	-2.132014	0.543301
16	-6.329717	0.018998	-0.172350
6	-6.436417	-2.483494	0.476562
1	-4.289763	-2.831843	0.792476
6	-7.275174	-1.440422	0.093331
1	-6.815498	-3.478706	0.686301
6	-8.687040	-1.573518	-0.049455
6	-9.640908	-0.666065	-0.429176
1	-9.058679	-2.567682	0.184490
6	-9.335340	0.684356	-0.775414
6	-11.074884	-1.029990	-0.510357
7	-9.058069	1.780729	-1.053439
8	-11.962021	-0.272084	-0.842135
8	-11.312789	-2.326500	-0.169962
1	-12.276024	-2.443872	-0.260871
1	2.195006	7.437726	0.991613

Table S2	Cartesian	coordinates	for the	optimized	structure of	of GJ2 .
				1		

At.	No. X	Y	Z
6	-1.891064	0.831038	-0.052995
6	-0.896368	0.158027	0.681824
6	0.416557	0.612712	0.703656
6	0.802722	1.753897	-0.031208
6	-0.181099	2.399450	-0.797571
6	-1.500041	1.957998	-0.793977
6	3.174192	1.234287	-0.024492
6	3.043891	0.034488	0.703960
6	4.035925	-0.936919	0.666050
1	3.910862	-1.867091	1.209655
6	5.220360	-0.732433	-0.063489
6	5.347708	0.455426	-0.797349
6	4.335727	1.412719	-0.789745
1	-1.157434	-0.711495	1.276888
1	0.084430	3.244159	-1.423392
1	-2.226344	2.476827	-1.413181
1	6.223694	0.631190	-1.410447
1	4.454763	2.303986	-1.395739
16	1.616790	-0.186564	1.751055
7	2.140904	2.199206	0.018730
6	6.219121	-1.811534	-0.061871
7	5.896504	-3.073514	0.130783
7	7.589560	-1.639304	-0.292846
6	7.075361	-3.785797	0.033634
6	8.154591	-2.913385	-0.232295
6	8.349644	-0.432247	-0.363357
6	7.305025	-5.162538	0.160966
6	9.470129	-3.363848	-0.355312
6	9.098895	-0.154936	-1.511859
6	8.373436	0.449739	0.722304
1	6.478299	-5.837025	0.361416
6	8.610755	-5.621875	0.029051
6	9.677422	-4.735026	-0.222094
1	10.293896	-2.682280	-0.542839
1	9.068424	-0.847017	-2.348004
6	9.867603	1.008434	-1.573087
6	9.133010	1.616638	0.647542
1	7.798859	0.215771	1.612879
1	8.817653	-6.684260	0.123690
1	10.685921	-5.128808	-0.313456
l	10.449411	1.220/18	-2.465676
6	9.882596	1.897838	-0.497/141
1	9.147/249	2.301579	1.490704
1	10.478587	2.804638	-0.548590

6	2.448594	3.600834	-0.287357
1	2.781065	3.724915	-1.330126
6	3.467584	4.218631	0.680571
6	3.720551	5.701474	0.376738
1	4.415371	3.669978	0.639721
1	3.084989	4.103623	1.702813
6	4.728673	6.340956	1.336899
1	4.082268	5.807699	-0.656116
1	2.770518	6.252446	0.424853
1	4.380499	6.279278	2.374862
1	5.701284	5.836966	1.283315
1	1.513964	4.156747	-0.191191
6	-3.271007	0.347438	-0.042482
6	-3.737412	-0.926638	0.219104
16	-4.613978	1.424413	-0.370971
6	-5.142928	-1.048652	0.144442
1	-3.079150	-1.762910	0.425482
6	-5.788218	0.131866	-0.176335
1	-5.669609	-1.984494	0.300475
1	4.887389	7.398864	1.100151
6	-7.197067	0.376692	-0.344342
6	-7.821880	1.530225	-0.806970
16	-8.373158	-0.854965	0.056671
6	-9.218945	1.422980	-0.844549
1	-7.275660	2.414233	-1.116736
6	-9.708748	0.191631	-0.415208
1	-9.877863	2.216976	-1.181055
6	-11.093798	-0.136148	-0.374140
6	-11.733611	-1.285791	0.011504
1	-11.744122	0.668758	-0.706317
6	-11.039062	-2.442895	0.474823
6	-13.209283	-1.407298	-0.026990
7	-10.445837	-3.372677	0.849075
8	-13.829970	-2.396734	0.300753
8	-13.822833	-0.277403	-0.475498
1	-14.776414	-0.477744	-0.455471

Table S3	Cartesian	coordinates	for the	optimized	structure	of GJ3
1 4010 55	Curtoblan	coorainates	101 the	optimized	Suracture	01 000.

At.	No. X	Y	Z
6	-3.516112	1.165307	-0.158737
6	-2.552480	0.475165	0.597401
6	-1.225481	0.890368	0.631971
6	-0.792113	1.997664	-0.126664
6	-1.744380	2.656336	-0.921512
6	-3.079062	2.262552	-0.917023
6	1.558992	1.393695	-0.078857
6	1.378236	0.220365	0.681255
6	2.334101	-0.787178	0.680548
1	2.169538	-1.696632	1.248087
6	3.532106	-0.647006	-0.042233
6	3.709856	0.514481	-0.807041
6	2.733645	1.508036	-0.836228
1	-2.846686	-0.373745	1.207103
1	-1.442306	3.472400	-1.568583
1	-3.780567	2.788288	-1.557895
1	4.597270	0.641643	-1.415645
1	2.891916	2.377466	-1.464546
16	-0.066982	0.080309	1.717199
7	0.561024	2.396659	-0.072787
6	4.488766	-1.762819	-0.000110
7	4.115901	-3.004260	0.231098
7	5.866348	-1.652106	-0.227001
6	5.266226	-3.764833	0.165883
6	6.380589	-2.944604	-0.120418
6	6.673397	-0.478569	-0.333489
6	5.440347	-5.144414	0.340607
6	7.678172	-3.450333	-0.217881
6	7.433615	-0.266348	-1.488606
6	6.730320	0.435406	0.724068
1	4.586263	-5.778717	0.556879
6	6.727786	-5.658829	0.234558
6	7.830233	-4.823360	-0.037397
1	8.529532	-2.808305	-0.421096
1	7.377262	-0.982580	-2.302751
6	8.245937	0.864544	-1.584763
6	7.533879	1.569633	0.614439
1	6.146154	0.251555	1.620142
1	6.891957	-6.724724	0.366221
1	8.823029	-5.259193	-0.107463
1	8.835978	1.026467	-2.482500
6	8.294163	1.786166	-0.537235
1	7.573508	2.279601	1.435803

60.9236833.77460211.2753453.84955061.9510994.38780262.2909435.83752212.8687183.78875211.5390984.34522063.2991526.4757812.6918565.86894311.3703786.43835212.9118466.49340014.2428345.91707210.0093464.367693	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
11.2753453.84955061.9510994.38780262.2909435.83752212.8687183.78875211.5390984.34522063.2991526.4757812.6918565.86894211.3703786.43835212.9118466.49340014.2428345.91707210.0093464.367692	$\begin{array}{ccccc} 0 & -1.463464 \\ 2 & 0.539733 \\ 2 & 0.168858 \\ 2 & 0.551348 \\ 6 & 1.556136 \\ 1 & 1.129776 \\ 5 & -0.854450 \\ 2 & 0.153585 \\ 6 & 2.155494 \\ 2 & 1.141808 \\ 8 & -0.360352 \\ 8 & 0.840590 \end{array}$
61.9510994.38780262.2909435.83752212.8687183.78875211.5390984.34522663.2991526.4757812.6918565.86894211.3703786.43835212.9118466.49340614.2428345.91707210.0093464.367692	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
62.2909435.83752212.8687183.78875211.5390984.34522063.2991526.4757812.6918565.86894211.3703786.43835212.9118466.49340014.2428345.91707210.0093464.367693	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 0.551348 6 1.556136 1 1.129776 5 -0.854450 2 0.153585 6 2.155494 2 1.141808 8 -0.360352 8 0 840590
1 1.539098 4.345220 6 3.299152 6.47578 1 2.691856 5.868943 1 1.370378 6.438353 1 2.911846 6.493400 1 4.242834 5.917073 1 0.009346 4.367698	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
63.2991526.4757812.6918565.86894311.3703786.43835212.9118466.49340014.2428345.91707210.0093464.367693	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 2.691856 5.868943 1 1.370378 6.438352 1 2.911846 6.493400 1 4.242834 5.917072 1 0.009346 4.367698	5 -0.854450 2 0.153585 6 2.155494 2 1.141808 8 -0.360352 8 0.840590
1 1.370378 6.438352 1 2.911846 6.493400 1 4.242834 5.917072 1 0.009346 4.367698	2 0.153585 6 2.155494 2 1.141808 8 -0.360352 8 0.840590
12.9118466.49340014.2428345.91707210.0093464.367693	6 2.155494 2 1.141808 8 -0.360352 8 0.840590
1 4.242834 5.917072 1 0.009346 4.367698	2 1.141808 8 -0.360352 8 0.840590
1 0.009346 4.367698	8 -0.360352 8 0.840590
	8 0.840590
1 3.525797 7.50798	0.010570
6 -4.931962 0.74049	3 -0.164364
6 -5.971897 1.68187	1 -0.281449
6 -5.290101 -0.61829	8 -0.055068
6 -7.298496 1.27976	6 -0.289631
1 -5.734661 2.73991	7 -0.336708
6 -6.615628 -1.02589	-0.060360
1 -4.511275 -1.37224	4 0.005942
6 -7.659341 -0.08127	9 -0.178820
1 -8.082587 2.02866	6 -0.371400
1 -6.838996 -2.08240	0.017338
6 -9.077545 -0.38836	-0.196304
6 -9.756065 -1.57039	2 -0.118413
1 -9.718117 0.48442	0 -0.289219
6 -9.138254 -2.85395	6 0.007342
6 -11.242899 -1.61514	2 -0.160101
7 -8.623404 -3.89266	0.109715
8 -11.899497 -2.63220	-0.095944
8 -11.810787 -0.38588	5 -0.279138
1 -12.772229 -0.54580	6 -0 294559

Table S4 Cartesian coordinates for the optimized structure of GJ4.

At.	No. X	Y	Z
6	-1.824137	0.436139	0.087079
6	-0.773788	-0.165598	0.805300
6	0.505975	0.376128	0.802076
6	0.801665	1.537738	0.057806
6	-0.237585	2.115424	-0.688823
6	-1.524045	1.586210	-0.660240
6	3.200497	1.169038	0.012800
6	3.163136	-0.033695	0.747136
6	4.213081	-0.941062	0.687773
1	4.159857	-1.874847	1.236951
6	5.364374	-0.666083	-0.071140
6	5.399251	0.524302	-0.811139
6	4.329945	1.416565	-0.780849
1	-0.965503	-1.049314	1.405914
1	-0.040985	2.975229	-1.319532
1	-2.295735	2.054015	-1.264979
1	6.247031	0.751988	-1.446368
1	4.378568	2.311194	-1.391580
16	1.776696	-0.339659	1.826759
7	2.110408	2.067603	0.078735
6	6.429025	-1.679945	-0.090260
7	6.192556	-2.958354	0.119048
7	7.779173	-1.423464	-0.359687
6	7.411081	-3.595488	-0.006214
6	8.425160	-2.658788	-0.307592
6	8.460329	-0.172137	-0.459930
6	7.731193	-4.953829	0.123531
6	9.762703	-3.025919	-0.464886
6	9.156294	0.141722	-1.632318
6	8.463068	0.717613	0.619634
1	6.954890	-5.677735	0.351345
6	9.059427	-5.330502	-0.041789
6	10.060264	-4.380066	-0.328701
1	10.535656	-2.294897	-0.680228
1	9.142741	-0.557162	-2.463256
6	9.850970	1.348846	-1.723406
6	9.148162	1.927627	0.515376
1	7.931100	0.455792	1.528744
1	9.336071	-6.3/6819	0.053854
1	11.088768	-4.710135	-0.445903
l C	10.391561	1.5894//	-2.634519
0 1	9.844/53	2.245119	-0.653058
1	9.146347	2.618332	1.353945
1	10.383067	3.185774	-0./2/435

6	2.323281	3.484226	-0.237937
1	2.626786	3.624354	-1.287647
6	3.321328	4.167825	0.707370
6	3.483548	5.660237	0.389445
1	4.298408	3.674256	0.653281
1	2.964136	4.038714	1.737096
6	4.470125	6.363565	1.327105
1	3.820494	5.778979	-0.650398
1	2.504667	6.156814	0.450819
1	4.144007	6.290744	2.371500
1	5.468782	5.915156	1.259945
1	1.358002	3.981539	-0.124762
6	-3.166625	-0.145326	0.118241
6	-3.533290	-1.452265	0.369332
16	-4.592100	0.832585	-0.162646
6	-4.930204	-1.672118	0.326602
1	-2.811519	-2.242720	0.542450
6	-5.668208	-0.540570	0.039451
1	-5.378763	-2.649471	0.465864
1	4.564332	7.426840	1.080086
6	-7.114061	-0.409433	-0.094382
6	-7.706642	0.692835	-0.743538
6	-7.976091	-1.398686	0.430048
6	-9.082755	0.792307	-0.861391
1	-7.079493	1.467804	-1.174617
6	-9.351319	-1.305166	0.305572
1	-7.556046	-2.246184	0.961941
6	-9.946399	-0.200478	-0.346874
1	-9.511251	1.652012	-1.370679
1	-9.967745	-2.089101	0.726976
6	-11.368910	0.003603	-0.531974
6	-12.452898	-0.746173	-0.172126
1	-11.620302	0.922448	-1.054591
6	-12.380860	-1.994231	0.521650
6	-13.838480	-0.306915	-0.487281
7	-12.306573	-3.009258	1.086451
8	-14.837575	-0.929624	-0.197036
8	-13.885175	0.882174	-1.144773
1	-14.832437	1.058441	-1.292254

	Table S5 C	Cartesian	coordinates	for the	optimized	structure of GJ5
--	------------	-----------	-------------	---------	-----------	------------------

At.	No. X	Y	Ζ
6	2.623414	0.024282	-0.005498
6	2.223150	-1.232581	0.411073
16	1.218636	0.991044	-0.431167
6	0.822792	-1.415273	0.404335
1	2.922758	-1.997388	0.732294
6	0.114093	-0.305731	-0.016884
1	0.341928	-2.329390	0.733583
6	-1.332050	-0.144385	-0.144383
6	-2.165144	-1.269935	-0.290523
6	-1.955198	1.111430	-0.128644
6	-3.542197	-1.147114	-0.422144
1	-1.726409	-2.260936	-0.354457
6	-3.337136	1.237582	-0.222796
1	-1.360386	2.011621	-0.002012
6	-4.176257	0.116013	-0.361492
16	-4.476587	-2.598320	-0.847856
1	-3.758690	2.232305	-0.173731
7	-5.573933	0.239728	-0.462844
6	-6.037426	-2.155334	-0.119656
6	-6.446528	-0.806284	-0.070198
6	-6.145388	1.561804	-0.750656
6	-6.887938	-3.179897	0.295687
6	-7.756531	-0.545373	0.367825
6	-6.365214	2.508488	0.446659
1	-7.097503	1.394674	-1.265151
1	-5.487498	2.043955	-1.481836
1	-6.528809	-4.204746	0.261310
6	-8.187454	-2.901562	0.718924
6	-8.617434	-1.578519	0.741374
1	-8.121020	0.471494	0.422862
6	-6.953713	3.853715	-0.000552
1	-7.031421	2.041764	1.181539
1	-5.419538	2.677648	0.974738
1	-8.847638	-3.708271	1.022409
l	-9.625064	-1.332899	1.064620
6	-7.185867	4.822589	1.163243
1	-6.281553	4.319336	-0.735629
1	-7.902905	3.679027	-0.52/1/2
1	-7.606140	5.771433	0.812107
1	-/.8821//	4.400813	1.898066
l (-6.248304	5.046104	1.080324
6	5.955130	0.55904/	-0.115015
0	4.339408	1.858520	-0.430664
16	5.352661	-0.458654	0.155596

6	5.729862	2.033142	-0.449022
1	3.628653	2.652333	-0.631867
6	6.454253	0.881406	-0.149714
1	6.218191	2.976777	-0.670296
6	7.876325	0.831544	-0.107115
6	8.731098	-0.203909	0.171497
1	8.354631	1.780304	-0.335624
6	8.279465	-1.518557	0.493292
6	10.201292	-0.026117	0.158188
7	7.882372	-2.582206	0.753118
8	11.005805	-0.902416	0.396317
8	10.578989	1.244503	-0.153931
1	11.553268	1.235612	-0.131086