Electronic Supporting Information

Cyclophosphazene-Organostannoxane Hybrid Motifs

in Polymeric and Molecular Systems

Subrata Kundu^a, Chandrajeet Mohapatra^a and Vadapalli Chandrasekhar, *^{a,b}

^aDepartment of Chemistry, Indian Institute of Technology Kanpur, Kanpur - 208016, India

^bNational Institute of Science Education and Research, Institute of Physics Campus, School of Chemical Sciences, Bhubaneshwar-751005, India

*E-mail: vc@iitk.ac.in;vc@niser.ac.in; Phone: (+91) 512-259-7259. Fax: (+91)521-259-0007/7436.

Experimental Section:

Solvents were distilled and dried prior to use according to standard procedures. [*n*-Bu₂SnO]_n, 3,5-dinitrosalicylic acid, 2,2'-biphenol and 4-hydroxy pyridine (all from Aldrich) were used as such. Hexachlorocyclotriphosphazene (Nippon Soda, Japan) was recrystallized from *n*-hexane before use. Melting points were measured using a JSGW melting point apparatus and are uncorrected. Elemental analyses were carried out using a Thermoquest CE instruments model EA/110 CHNS-O elemental analyzer. Infrared spectra were recorded as KBr pellets on a FT-IR Bruker-Vector Model. ¹H,³¹P and ¹¹⁹Sn NMR spectra were obtained on a JEOL-DELTA2 500 model spectrometer using CDCl₃ as solvent. Chemical shifts were referenced with respect to tetramethylsilane (for ¹H NMR), phosphoric acid (for ³¹P NMR) and tetramethyltin (for ¹¹⁹Sn NMR) respectively. ¹¹⁹Sn NMR spectra were recorded under broad-band decoupled conditions.

Synthesis:

Compound 1^1 and L^2 were synthesized according to literature procedure and purity was checked by ¹H, ¹¹⁹Sn and ³¹P NMR (given below).

$[n-Bu_2Sn-OOR(O)H_2O]_n$ (1):

¹H NMR (CDCl₃): δ (ppm) = 0.84-1.94, (m, 18H, n-Bu); 8.62 (d, 1H, ArH); 8.86 (d, 1H, ArH). ¹¹⁹Sn NMR (CDCl₃): δ (ppm) = -47.5

$gem-[N_3P_3(O_2C_{12}H_8)_2(OC_5H_4N-4)]$ (L):

¹H NMR(CDCl₃): δ (ppm) = 7.7 (d, 4H); 7.20-7.52 (m, 16H); 8.63 (d, 4H). ³¹P NMR: δ (ppm) = 9.15(t), 25.20 (d){²J(P-N-P) = 93.83 Hz}.

Synthesis of 2 and 3:

Polymer 1 (200 mg, 0.42 mmol) and L [*gem*- $\{N_3P_3(O_2C_{12}H_8)_2(OC_5H_4N-4)_2\}(145 mg, 0.21 mmol) were heated to reflux for 24h in 40 mL methanol. Then the methanol was concentrated to 5mL under reduced pressure to get a yellow precipitate. The yellow solid product was re-dissolved in 15mL of (1:1) CH₃OH-CHCl₃ solvent mixture. Slow evaporation of the solvent mixture yielded compound$ **2**and**3**as a crystalline form.

Compounds 2 and 3 were separated by recrystallization from CHCl₃ solution. The polymer 2 was collected from chloroform solution (filtrate) and compound 3was collected as an insoluble crystalline material.

[*gem*-{N₃P₃-(O₂C₁₂H₈)₂(OC₅H₄N-4)₂}{*n*-Bu₂Sn-OOCR(O)}₂]_n (2), R= [3,5-(NO₂)₂C₆H₂]:Yield: 216mg(63 %, with respect to tin).M.p.: 141 °C.Elemental Analysis: Calcd. (%) for C₆₄H₆₄N₉O₂₀P₃Sn₂: C, 47.76; H, 4.01; N, 7.83.Found: C, 47.26; H,4.08; N, 7.89; ¹H NMR[DMSO-d⁶]: δ (ppm) = 0.73 (t, 12H, *n*-Bu); 1.19 (m, 8H, *n*-Bu); 1.33 (m, 8H, *n*-Bu); 1.42 (m, 8H, *n*-Bu); 7.16-7.51 (m, 16H, biphenol); 7.64 (d, 4H, Pyridyl); 8.57 (d, 2H, Ar- salicylate); 8.70 (d, 4H, Pyridyl); 8.79 (d, 2H, Ar- salicylate). ³¹P NMR[DMSO-d⁶]: δ (ppm) = δ ppm = 25.22 (d, P(O₂C₁₂H₈), 9.59 (t, P(O-C₅H₄N-3)₂, {²J(P–N–P) = 95.52 Hz}];¹¹⁹Sn NMR [DMSO-d⁶]: δ (ppm) = -347 ppm. IR (KBr, v/cm-1): 3092 (m), 2956 (m, br), 2927 (m), 2869 (s), 1635 (s), 2605 (m), 1528 (s), 1436 (s), 1338 (s), 1228 (s), 1174 (m), 1092 (m), 889 (m), 719 (s), 609 (m), 522 (m). ESI-MS: m/z (%) 355.0531 [(*n*-Bu₂Sn)₂OOCR(O)]²⁺ (100); 693.1010 [LH]⁺ (58).

[*gem*-{N₃P₃-(O₂C₁₂H₈)₂}(O)(*n*-Bu₂Sn)₂(μ₃-O)(μ-OMe)]₂.MeOH(3):Yield: 29.8mg (13%, with respect to tin). M.p.: 189 °C.Elemental Analysis: Calcd. (%) for C₆₄H₆₄N₉O₂₀P₃Sn₂: C, 47.15; H, 5.71; N, 3.84.Found: C, 46.96; H, 5.78; N, 3.81. IR (KBr, v/cm-1): 3571 (m), 3422 (m, br),

3069(m, br), 2926 (s), 2957 (s), 2856 (m), 1635 (s), 1603 (s), 1500 (s), 1437 (s), 1227 (m), 1171(s), 1093 (s), 776 (s), 609 (s), 533 (m).

References

- L.Tian, F. Li, X.Zheng, Y.Sun, D.Yan and L. Tu, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 2011, 41, 454.
- 2. G. A. Carriedo, F. J. G. Alonso, J. L. García, R. J. Carbajo and F. L. Ortiz, *Inorg. Chem.*, 1999,6, 1015.

Figure S1: 1-D coordination polymer (1)

Figure S2: Schematic representation of the expected 2-D polymer in the reaction between **1** and L

Scheme S1: Formation of 2 from 1.

Figure S3: The core of polymer 1 lying in a plane.

Chart S1:Carboxylate-bridged dimer

FigureS4:Zig-zag coordination polymer (2).

Figure S5: ³¹P NMR of 2.

Figure S6:¹¹⁹Sn NMR of 2.

Figure S7: Co(II)-mediated hydrolysis product $[\{(LCuCl)_2(Co(NO_3)\}Cl]$ where (L)= $N_3P_3(OC_5H_4N)_5(O)$ (Reference: V. Chandrasekhar, B. M. Pandian and R. Azhakar, *Inorg. Chem.* 2006, **45**, 3510)

Figure S8:Coordination environment around the tin atomsof 2(distorted octahedral geometry)

Figure S9:(a) Coordination environment around terminal tin(Sn1) atoms[distorted rectangular pyramidal geometry ($\tau = 0.41$, cf. the τ values for theidealized geometries are $\tau = 0$, rectangular pyramidal; $\tau = 1$, trigonalbipyramidal))]³ (b) around central tin atoms [distorted rectangular pyramidal geometry ($\tau = 0.31$)]

Reference:

3.A. W.Addison, T. N.Rao, J.Reedijk, J.van Rijn and G. C. Verschoor, *J. Chem. Soc., Dalton Trans.***1984**, 1349.

X-ray Crystallographic Study: The crystal data for compounds**2**and **3**were collected on a BrukerD8 QUESTDiffractrometer. SMART software package (version 5.628) was used for collecting data frames, SAINT software package (version 6.45) for integration of the intensity and scaling and SADABS was used for absorption correction. The structures were solved and refined by full-matrix least squares on F² using SHELXTL software package.¹Non-hydrogen atoms were refined with anisotropic displacement parameters. Figures and their bonding parameters were obtained from DIAMOND 3.1f software package.²

Reference:

(1) G. M. Sheldrick, SHELXTL version 6.14; Bruker AXS Inc.: Madison, WI, 2003.

(2) (a) K.Brandenburg, Diamond, Ver. 3.1eM; Crystal Impact GbR: Bonn, Germany, 2005.(b)

DIAMOND version 3.1f; Crystal Impact GbR: Bonn, Germany, 2004.

Table S1.Crystal data and structure refinement parameters of compound 2 (ccdc 971483) and 3(ccdc971484).

Parameters	2	3
Empirical formula	$C_{64}H_{64}N_9O_{20}P_3Sn_2$	$C_{86}H_{124}N_6O_{18}P_6Sn_4$
Formula weight	1609.58	2190.58
Temperature	100(2) K	100(2) K
Wavelength	0.71069 Å	0.71069 Å
Crystal system, space group	Triclinic	Monoclinic
Unit cell dimensions	a = 11.378(5) Å	a = 18.805(5) Å
	b = 14.319(5) Å	b = 12.506(5) Å
	c = 23.323(5) Å	c = 21.511(5) Å
	$\alpha = 82.037(5)^{\circ}.$ $\beta = 79.189(5)^{\circ}$	α=90
	$\gamma = 68.015(5)^{\circ}$	$\beta = 110.835(5)^{\circ}.$
		$\gamma = 90$
Volume	$3451(2) Å^3$	4728(3) Å ³
Z, Calculated density	2, 1.549 Mg/m ³	2, 1.539 Mg/m ³
Absorption coefficient	0.872 mm ⁻¹	1.213 mm ⁻¹
F(000)	2264	2640
Crystal size	0.20 x 0.18 x 0.15 mm ³	0.14 x 0.13 x 0.10 mm ³
θ range for data collection	1.83 to 25.50°	2.00 to 25.00°
Limiting indices	-13<=h<=13, -17<=k<=15, -28<=1<=28	-22<=h<=20, -13<=k<=14, -
Reflections collected / unique	$\frac{12859}{12631} = 0.02901$	31227/8327 [R(int) = 0.0684]
Completeness to theta	98.2 %	99.8 %
Data / restraints / parameters	12631 / 0 / 887	8327 / 24 / 549
Goodness-of-fit on F ²	1.043	1.080
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0483, wR2 = 0.1294	R1 = 0.0702, wR2 = 0.1586
R indices (all data)	R1 = 0.0590, wR2 = 0.1544	R1 = 0.1185, wR2 = 0.1789
Largest diff. peak and hole	2.206 and -0.963 e.Å ⁻³	1.840 and -1.059 e.Å ⁻³

Bo	ond lengths (Å)	Bonc	l angles (°)
Sn(1)-C(8)	2.128(4)	C(8)-Sn(1)-C(12)	163.61(18)
Sn(1)-C(12)	2.128(4)	C(8)-Sn(1)-O(14)	95.63(14)
Sn(1)-O(14)	2.132(3)	C(12)-Sn(1)-O(14)	99.63(15)
Sn(1)-O(13)	2.195(3)	C(8)-Sn(1)-O(13)	92.87(15)
Sn(1)-O(13)#1	2.426(3)	C(12)-Sn(1)-O(13)	95.58(16)
Sn(1)-N(5)	2.429(4)	O(14)-Sn(1)-O(13)	80.14(11)
Sn(2)-O(7)	2.105(3)	C(8)-Sn(1)-O(13)#1	83.16(14)
Sn(2)-C(30)	2.128(5)	C(12)-Sn(1)-O(13)#1	87.67(14)
Sn(2)-C(26)	2.131(5)	O(14)-Sn(1)-O(13)#1	145.16(11)
Sn(2)-O(6)	2.173(3)	O(13)-Sn(1)-O(13)#1	65.20(12)
Sn(2)-O(6)#2	2.440(3)	C(8)-Sn(1)-N(5)	89.48(15)
Sn(2)-N(4)	2.486(4)	C(12)-Sn(1)-N(5)	85.73(16)
P(2)-N(1)	1.574(4)	O(14)-Sn(1)-N(5)	85.86(13)
P(2)-N(3)	1.579(4)	O(13)-Sn(1)-N(5)	165.96(12)
P(2)-O(8)	1.593(3)	O(13)#1-Sn(1)-N(5)	128.84(12)
P(2)-O(9)	1.606(3)	O(7)-Sn(2)-C(30)	100.18(16)
P(3)-N(2)	1.568(4)	O(7)-Sn(2)-C(26)	98.75(16)
P(3)-N(3)	1.586(4)	C(30)-Sn(2)-C(26)	157.99(19)
P(3)-O(17)	1.588(3)	O(7)-Sn(2)-O(6)	80.95(12)
P(3)-O(18)	1.591(3)	C(30)-Sn(2)-O(6)	99.70(16)
P(1)-N(2)	1.577(4)	C(26)-Sn(2)-O(6)	94.26(16)
P(1)-O(19)	1.581(3)	O(7)-Sn(2)-O(6)#2	146.44(11)
P(1)-O(20)	1.591(3)	C(30)-Sn(2)-O(6)#2	85.65(15)
P(1)-N(1)	1.596(4)	C(26)-Sn(2)-O(6)#2	84.76(15)
O(18)-C(53)	1.406(5)	O(6)-Sn(2)-O(6)#2	65.49(13)
O(9)-C(18)	1.375(5)	O(7)-Sn(2)-N(4)	84.22(13)
O(20)-C(52)	1.402(5)	C(30)-Sn(2)-N(4)	84.58(16)
O(8)-C(21)	1.396(5)	C(26)-Sn(2)-N(4)	86.26(16)
O(19)-C(41)	1.414(5)	O(6)-Sn(2)-N(4)	165.07(12)
O(6)-C(34)	1.313(6)	O(6)#2-Sn(2)-N(4)	129.33(12)

 Table S2: Bond parameters of polymer 2:

O(6)-Sn(2)#2	2.440(3)	N(1)-P(2)-N(3)	118.8(2)
O(13)-C(65)	1.298(5)	N(1)-P(2)-O(8)	111.10(18)
O(13)-Sn(1)#1	2.426(3)	N(3)-P(2)-O(8)	109.38(18)
O(17)-C(60)	1.405(5)	N(1)-P(2)-O(9)	105.69(18)
O(10)-N(7)	1.229(5)	N(3)-P(2)-O(9)	111.82(18)
O(7)-C(36)	1.298(5)	O(8)-P(2)-O(9)	97.99(16)
O(3)-N(8)	1.208(6)	N(2)-P(3)-N(3)	117.71(19)
N(4)-C(24)	1.332(6)	N(2)-P(3)-O(17)	107.23(19)
N(4)-C(23)	1.332(6)	N(3)-P(3)-O(17)	110.19(19)
O(1)-N(9)	1.224(6)	N(2)-P(3)-O(18)	112.52(19)
O(11)-N(7)	1.235(5)	N(3)-P(3)-O(18)	104.59(18)
N(5)-C(16)	1.336(6)	O(17)-P(3)-O(18)	103.76(16)
N(5)-C(20)	1.349(6)	N(2)-P(1)-O(19)	112.63(19)
O(12)-C(65)	1.225(5)	N(2)-P(1)-O(20)	106.03(19)
O(5)-C(34)	1.220(6)	O(19)-P(1)-O(20)	103.39(17)
O(14)-C(1)	1.296(5)	N(2)-P(1)-N(1)	117.5(2)
N(10)-O(15)	1.234(5)	O(19)-P(1)-N(1)	104.19(18)
N(10)-O(16)	1.237(5)	O(20)-P(1)-N(1)	112.32(18)
N(10)-C(6)	1.465(6)	C(53)-O(18)-P(3)	121.3(3)
C(58)-C(57)	1.398(6)	C(18)-O(9)-P(2)	125.0(3)
C(58)-C(53)	1.405(6)	C(52)-O(20)-P(1)	119.8(3)
C(58)-C(59)	1.480(7)	C(21)-O(8)-P(2)	125.5(3)
N(8)-O(4)	1.243(6)	C(41)-O(19)-P(1)	119.9(3)
N(8)-C(37)	1.475(6)	C(34)-O(6)-Sn(2)	137.0(3)
C(6)-C(5)	1.370(6)	C(34)-O(6)-Sn(2)#2	108.5(3)
C(6)-C(1)	1.423(6)	Sn(2)-O(6)-Sn(2)#2	114.50(13)
N(9)-O(2)	1.226(6)	C(65)-O(13)-Sn(1)	136.8(3)
N(9)-C(39)	1.456(6)	C(65)-O(13)-Sn(1)#1	106.9(3)
C(3)-C(4)	1.387(6)	Sn(1)-O(13)-Sn(1)#1	114.80(12)
C(3)-C(2)	1.387(6)	C(60)-O(17)-P(3)	118.1(3)
C(2)-C(1)	1.429(6)	C(36)-O(7)-Sn(2)	133.1(3)
C(2)-C(65)	1.497(6)	C(24)-N(4)-C(23)	117.0(4)
N(7)-C(4)	1.456(6)	C(24)-N(4)-Sn(2)	114.4(3)
C(41)-C(46)	1.387(6)	C(23)-N(4)-Sn(2)	128.6(3)
C(41)-C(42)	1.391(6)	P(2)-N(3)-P(3)	120.9(2)

C(53)-C(54)	1.372(6)	C(16)-N(5)-C(20)	117.4(4)
C(4)-C(5)	1.375(6)	C(16)-N(5)-Sn(1)	118.3(3)
C(40)-C(39)	1.366(7)	C(20)-N(5)-Sn(1)	124.0(3)
C(40)-C(35)	1.403(6)	P(2)-N(1)-P(1)	119.0(2)
C(36)-C(35)	1.415(6)	C(1)-O(14)-Sn(1)	132.6(3)
C(36)-C(37)	1.435(6)	P(3)-N(2)-P(1)	122.5(2)
C(64)-C(63)	1.389(7)	O(15)-N(10)-O(16)	122.9(4)
C(64)-C(59)	1.395(7)	O(15)-N(10)-C(6)	118.1(4)
C(17)-C(16)	1.376(6)	O(16)-N(10)-C(6)	119.0(4)
C(17)-C(18)	1.392(6)	C(57)-C(58)-C(53)	116.7(4)
C(23)-C(22)	1.367(7)	C(57)-C(58)-C(59)	121.5(4)
C(18)-C(19)	1.361(7)	C(53)-C(58)-C(59)	121.8(4)
C(38)-C(37)	1.363(7)	O(3)-N(8)-O(4)	125.4(5)
C(38)-C(39)	1.402(7)	O(3)-N(8)-C(37)	119.4(5)
C(59)-C(60)	1.404(6)	O(4)-N(8)-C(37)	115.2(5)
C(46)-C(45)	1.417(6)	C(5)-C(6)-C(1)	125.0(4)
C(46)-C(47)	1.480(6)	C(5)-C(6)-N(10)	114.8(4)
C(52)-C(51)	1.371(6)	C(1)-C(6)-N(10)	120.1(4)
C(52)-C(47)	1.400(6)	O(1)-N(9)-O(2)	123.3(4)
C(35)-C(34)	1.494(6)	O(1)-N(9)-C(39)	118.4(4)
C(10)-C(11)	1.520(7)	O(2)-N(9)-C(39)	118.3(4)
C(10)-C(9)	1.521(6)	C(4)-C(3)-C(2)	121.1(4)
C(42)-C(43)	1.392(7)	C(3)-C(2)-C(1)	121.1(4)
C(21)-C(22)	1.376(7)	C(3)-C(2)-C(65)	115.2(4)
C(21)-C(25)	1.382(6)	C(1)-C(2)-C(65)	123.6(4)
C(20)-C(19)	1.396(7)	O(10)-N(7)-O(11)	124.1(4)
C(61)-C(62)	1.364(7)	O(10)-N(7)-C(4)	118.7(4)
C(61)-C(60)	1.385(7)	O(11)-N(7)-C(4)	117.2(4)
C(56)-C(55)	1.368(7)	C(46)-C(41)-C(42)	123.1(4)
C(56)-C(57)	1.396(7)	C(46)-C(41)-O(19)	119.1(4)
C(24)-C(25)	1.386(6)	C(42)-C(41)-O(19)	117.7(4)
C(48)-C(49)	1.379(6)	C(54)-C(53)-C(58)	122.4(4)
C(48)-C(47)	1.395(6)	C(54)-C(53)-O(18)	118.3(4)
C(50)-C(49)	1.398(7)	C(58)-C(53)-O(18)	119.0(4)
C(50)-C(51)	1.404(6)	C(5)-C(4)-C(3)	120.2(4)

C(30)-C(31)	1.519(7)	C(5)-C(4)-N(7)	119.7(4)
C(43)-C(44)	1.365(7)	C(3)-C(4)-N(7)	119.9(4)
C(54)-C(55)	1.382(7)	O(14)-C(1)-C(6)	119.1(4)
C(62)-C(63)	1.403(8)	O(14)-C(1)-C(2)	126.9(4)
C(44)-C(45)	1.400(7)	C(6)-C(1)-C(2)	113.9(4)
C(27)-C(28)	1.494(7)	C(39)-C(40)-C(35)	120.9(4)
C(27)-C(26)	1.531(7)	O(7)-C(36)-C(35)	126.6(4)
C(9)-C(8)	1.531(6)	O(7)-C(36)-C(37)	118.6(4)
C(32)-C(33)	1.507(8)	C(35)-C(36)-C(37)	114.8(4)
C(32)-C(31)	1.530(7)	C(63)-C(64)-C(59)	120.9(5)
C(12)-C(13)	1.509(7)	C(16)-C(17)-C(18)	117.9(4)
C(28)-C(29)	1.543(7)	N(4)-C(23)-C(22)	124.7(5)
C(13)-C(66)	1.413(11)	C(19)-C(18)-O(9)	124.9(4)
C(66)-C(67)	1.677(13)	C(19)-C(18)-C(17)	119.8(4)
		O(9)-C(18)-C(17)	115.3(4)
		C(37)-C(38)-C(39)	117.6(4)
		C(64)-C(59)-C(60)	117.8(4)
		C(64)-C(59)-C(58)	122.0(4)
		C(60)-C(59)-C(58)	120.2(4)
		C(41)-C(46)-C(45)	117.4(4)
		C(41)-C(46)-C(47)	122.1(4)
		C(45)-C(46)-C(47)	120.5(4)
		C(51)-C(52)-O(20)	117.8(4)
		C(51)-C(52)-C(47)	123.6(4)
		O(20)-C(52)-C(47)	118.5(4)
		C(40)-C(35)-C(36)	120.8(4)
		C(40)-C(35)-C(34)	114.6(4)
		C(36)-C(35)-C(34)	124.6(4)
		C(11)-C(10)-C(9)	112.7(4)
		C(43)-C(42)-C(41)	118.4(4)
		O(12)-C(65)-O(13)	120.3(4)
		O(12)-C(65)-C(2)	121.1(4)
		O(13)-C(65)-C(2)	118.6(4)
		C(22)-C(21)-C(25)	120.6(4)
		C(22)-C(21)-O(8)	117.3(4)

C(25)-C(21)-O(8)	122.1(4)
N(5)-C(20)-C(19)	122.4(4)
C(23)-C(22)-C(21)	117.0(4)
C(38)-C(37)-C(36)	124.7(4)
C(38)-C(37)-N(8)	117.0(4)
C(36)-C(37)-N(8)	118.3(4)
C(6)-C(5)-C(4)	118.5(4)
C(62)-C(61)-C(60)	119.9(5)
C(55)-C(56)-C(57)	120.3(5)
N(4)-C(24)-C(25)	123.4(4)
N(5)-C(16)-C(17)	123.8(4)
C(18)-C(19)-C(20)	118.7(4)
C(61)-C(60)-C(59)	121.5(4)
C(61)-C(60)-O(17)	119.0(4)
C(59)-C(60)-O(17)	119.5(4)
C(49)-C(48)-C(47)	121.8(4)
C(49)-C(50)-C(51)	119.6(4)
C(31)-C(30)-Sn(2)	115.0(3)
C(52)-C(51)-C(50)	118.5(4)
C(44)-C(43)-C(42)	120.3(4)
C(53)-C(54)-C(55)	119.4(4)
C(48)-C(49)-C(50)	120.1(4)
C(40)-C(39)-C(38)	121.1(4)
C(40)-C(39)-N(9)	120.1(4)
C(38)-C(39)-N(9)	118.7(4)
C(48)-C(47)-C(52)	116.5(4)
C(48)-C(47)-C(46)	122.3(4)
C(52)-C(47)-C(46)	121.2(4)
C(56)-C(57)-C(58)	120.9(5)
C(61)-C(62)-C(63)	120.3(5)
C(43)-C(44)-C(45)	121.4(5)
C(28)-C(27)-C(26)	116.0(4)
O(5)-C(34)-O(6)	120.2(4)
O(5)-C(34)-C(35)	122.0(4)
O(6)-C(34)-C(35)	117.8(4)

C(27)-C(26)-Sn(2)	117.5(3)
C(10)-C(9)-C(8)	111.0(4)
C(44)-C(45)-C(46)	119.4(4)
C(21)-C(25)-C(24)	117.2(4)
C(64)-C(63)-C(62)	119.6(5)
C(33)-C(32)-C(31)	112.7(5)
C(9)-C(8)-Sn(1)	118.6(3)
C(13)-C(12)-Sn(1)	114.8(3)
C(27)-C(28)-C(29)	112.7(5)
C(30)-C(31)-C(32)	114.6(4)
C(56)-C(55)-C(54)	120.3(5)
C(66)-C(13)-C(12)	114.9(7)
C(13)-C(66)-C(67)	105.0(8)
Symmetry transformations use	d to generate equivalent
atoms: #1 -x+1,-y+2,-z+2 #2 -x+1,-y	y+1,-z+1
1	

 Table S3: Bond parameters of complex 3.

Bond lengths (Å)		Bond angles (°)	
Sn(1)-O(7)	1.996(11)	O(7)-Sn(1)-C(27)	116.1(7)
Sn(1)-C(27)	2.09(2)	O(7)-Sn(1)-C(31)	113.6(7)
Sn(1)-C(31)	2.14(2)	C(27)-Sn(1)-C(31)	129.9(7)
Sn(1)-O(6)	2.157(10)	O(7)-Sn(1)-O(6)	82.7(4)
Sn(1)-O(8)	2.211(11)	C(27)-Sn(1)-O(6)	96.6(6)
Sn(2)-O(7)	2.044(10)	C(31)-Sn(1)-O(6)	95.4(6)
Sn(2)-C(35)	2.08(3)	O(7)-Sn(1)-O(8)	71.8(4)
Sn(2)-C(39)	2.12(2)	C(27)-Sn(1)-O(8)	93.8(7)
Sn(2)-O(7)#1	2.138(11)	C(31)-Sn(1)-O(8)	95.7(7)
Sn(2)-O(8)	2.183(12)	O(6)-Sn(1)-O(8)	154.4(4)
P(1)-N(1)	1.556(13)	O(7)-Sn(2)-C(35)	116.3(8)
P(1)-O(2)	1.582(11)	O(7)-Sn(2)-C(39)	117.1(8)
P(1)-N(2)	1.589(12)	C(35)-Sn(2)-C(39)	126.5(10)

P(1)-O(1)	1.590(10)	O(7)-Sn(2)-O(7)#1	73.8(5)
P(2)-N(3)	1.566(13)	C(35)-Sn(2)-O(7)#1	98.3(8)
P(2)-N(2)	1.584(13)	C(39)-Sn(2)-O(7)#1	97.8(8)
P(2)-O(5)	1.590(11)	O(7)-Sn(2)-O(8)	71.5(4)
P(2)-O(4)	1.603(10)	C(35)-Sn(2)-O(8)	95.5(8)
P(3)-O(6)	1.515(10)	C(39)-Sn(2)-O(8)	99.2(8)
P(3)-O(3)	1.573(13)	O(7)#1-Sn(2)-O(8)	145.3(4)
P(3)-N(1)	1.599(13)	N(1)-P(1)-O(2)	105.9(6)
P(3)-N(3)	1.605(12)	N(1)-P(1)-N(2)	119.5(7)
O(1)-C(12)	1.397(16)	O(2)-P(1)-N(2)	111.5(7)
O(2)-C(1)	1.396(19)	N(1)-P(1)-O(1)	113.3(7)
O(3)-C(25)	1.44(2)	O(2)-P(1)-O(1)	102.1(6)
O(4)-C(13)	1.403(18)	N(2)-P(1)-O(1)	103.5(6)
O(5)-C(24)	1.408(19)	N(3)-P(2)-N(2)	119.2(6)
O(7)-Sn(2)#1	2.138(11)	N(3)-P(2)-O(5)	107.0(6)
O(8)-C(26)	1.39(2)	N(2)-P(2)-O(5)	110.7(7)
C(1)-C(6)	1.38(2)	N(3)-P(2)-O(4)	112.1(7)
C(1)-C(5)	1.40(2)	N(2)-P(2)-O(4)	105.2(6)
C(2)-C(6)	1.36(3)	O(5)-P(2)-O(4)	101.2(5)
C(2)-C(3)	1.38(3)	O(6)-P(3)-O(3)	102.4(7)
C(3)-C(4)	1.37(3)	O(6)-P(3)-N(1)	113.0(6)
C(4)-C(5)	1.40(2)	O(3)-P(3)-N(1)	107.7(7)
C(5)-C(7)	1.48(2)	O(6)-P(3)-N(3)	110.1(6)
C(7)-C(12)	1.38(2)	O(3)-P(3)-N(3)	109.4(7)
C(7)-C(8)	1.39(2)	N(1)-P(3)-N(3)	113.5(7)
C(8)-C(9)	1.38(2)	C(12)-O(1)-P(1)	119.5(8)
C(9)-C(10)	1.38(2)	C(1)-O(2)-P(1)	124.7(9)
C(10)-C(11)	1.39(2)	C(25)-O(3)-P(3)	118.5(11)
C(11)-C(12)	1.38(2)	C(13)-O(4)-P(2)	117.3(8)
C(13)-C(14)	1.35(2)	C(24)-O(5)-P(2)	120.6(9)
C(13)-C(18)	1.39(2)	P(3)-O(6)-Sn(1)	123.2(6)
C(14)-C(15)	1.40(2)	Sn(1)-O(7)-Sn(2)	115.0(5)
C(15)-C(16)	1.38(3)	Sn(1)-O(7)-Sn(2)#1	138.7(5)
C(16)-C(17)	1.37(3)	Sn(2)-O(7)-Sn(2)#1	106.2(5)
C(17)-C(18)	1.41(2)	C(26)-O(8)-Sn(2)	127.0(11)

C(18)-C(19)	1.46(3)	C(26)-O(8)-Sn(1)	130.0(11)
C(19)-C(24)	1.39(2)	Sn(2)-O(8)-Sn(1)	101.7(5)
C(19)-C(20)	1.41(2)	P(1)-N(1)-P(3)	124.1(7)
C(20)-C(21)	1.36(3)	P(2)-N(2)-P(1)	119.0(8)
C(21)-C(22)	1.39(3)	P(2)-N(3)-P(3)	123.8(8)
C(22)-C(23)	1.39(3)	C(6)-C(1)-C(5)	121.9(16)
C(23)-C(24)	1.35(3)	C(6)-C(1)-O(2)	118.9(14)
C(27)-C(28)	1.47(3)	C(5)-C(1)-O(2)	118.8(15)
C(28)-C(29)	1.59(4)	C(6)-C(2)-C(3)	120(2)
C(29)-C(30)	1.46(4)	C(4)-C(3)-C(2)	119.8(19)
C(31)-C(32)	1.53(3)	C(3)-C(4)-C(5)	121.7(17)
C(32)-C(33)	1.57(3)	C(1)-C(5)-C(4)	116.3(16)
C(33)-C(34)	1.54(3)	C(1)-C(5)-C(7)	123.1(15)
C(35)-C(36)	1.36(4)	C(4)-C(5)-C(7)	120.6(14)
C(36)-C(37)	1.52(4)	C(2)-C(6)-C(1)	120.0(17)
C(37)-C(38)	1.46(3)	C(12)-C(7)-C(8)	117.4(16)
C(39)-C(40)	1.51(4)	C(12)-C(7)-C(5)	121.3(13)
C(40)-C(41)	1.40(5)	C(8)-C(7)-C(5)	121.2(15)
C(41)-C(42)	1.62(5)	C(9)-C(8)-C(7)	121.1(17)
O(9)-C(43)	1.38(2)	C(10)-C(9)-C(8)	120.1(16)
		C(9)-C(10)-C(11)	120.3(17)
		C(12)-C(11)-C(10)	118.2(17)
		C(7)-C(12)-C(11)	122.7(14)
		C(7)-C(12)-O(1)	120.4(14)
		C(11)-C(12)-O(1)	116.7(15)
		C(14)-C(13)-C(18)	123.7(16)
		C(14)-C(13)-O(4)	118.0(15)
		C(18)-C(13)-O(4)	118.2(17)
		C(13)-C(14)-C(15)	119.1(17)
		C(16)-C(15)-C(14)	119(2)
		C(17)-C(16)-C(15)	120.6(17)
		C(16)-C(17)-C(18)	121.2(18)
		C(13)-C(18)-C(17)	116.1(19)
		C(13)-C(18)-C(19)	121.7(15)
		C(17)-C(18)-C(19)	122.3(17)

C(24)-C(19)-C(20)	117.4(19)
C(24)-C(19)-C(18)	121.1(15)
C(20)-C(19)-C(18)	121.5(16)
C(21)-C(20)-C(19)	120.7(18)
C(20)-C(21)-C(22)	120.1(19)
C(23)-C(22)-C(21)	120(2)
C(24)-C(23)-C(22)	119.9(18)
C(23)-C(24)-C(19)	121.9(16)
C(23)-C(24)-O(5)	119.2(15)
C(19)-C(24)-O(5)	118.7(17)
C(28)-C(27)-Sn(1)	115.6(15)
C(27)-C(28)-C(29)	116(2)
C(30)-C(29)-C(28)	113(2)
C(32)-C(31)-Sn(1)	115.7(13)
C(31)-C(32)-C(33)	114.4(18)
C(34)-C(33)-C(32)	110(2)
C(36)-C(35)-Sn(2)	124(2)
C(35)-C(36)-C(37)	128(3)
C(38)-C(37)-C(36)	117(3)
C(40)-C(39)-Sn(2)	130(2)
C(41)-C(40)-C(39)	115(4)
C(40)-C(41)-C(42)	109(4)
Symmetry transformations used to generate equivalent	
atoms: #1 -x+2,-y+1,-z+1	