SUPPORTING INFORMATION

Hydrosilane-Promoted Cyclization of 2-Aminothiophenols

by CO₂ to Benzothiazoles

Xiang Gao, Bo Yu, Yanfei Zhao, Leiduan Hao and Zhimin Liu2

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface

and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences,

Beijing 100190, China. Fax: 8610-62562821; E-mail: liuzm@iccas.ac.cn.

This file includes:

- 1. Materials
- 2. Synthesis of 2-amino-5-methylbenzenethiol and 2-amino-5-methoxybenzenethiol
- 3. Synthesis of Benzothiazoles
- 4. NMR data of the as-prepared products
- 5. References

1. Materials

CO₂ (99.99%) was provided by Beijing Analytical Instrument Company. 2-Aminothiophenol (1a: 98%), 2-amino-4-chlorothiophenol (1e: 97%), 2-amino-6-methylbenzothiazole (98%), 2-amino-6-methoxybenzothiazole (99%), TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene, 98%), NMP (1-methyl-2-pyrrolidinone) were purchased from J&K Scientific Ltd. DBU (1,8-diazabicyclo[5.4.0]undec-7-ene, 98%), DBN (1,5-diazabicyclo[4.3.0]non-5-ene, 98%), PMHS (poly(methylhydrosiloxane), ca 1900), Et₂SiH₂ (diethylsilane, 98%), Et₃SiH (triethylsilane, 99%), 4nitroacetophenone (98%) were purchased from Alfa Aesar. 2-Amino-5-bromobenzenethiol (1d: 98%), 2-Amino-5-nitrobenzenethiol (1f: 98%)were purchased from Beijing Kaida Technology Development Co., Ltd. The deuterated solvent (DMSO-d₆) was obtained from Cambridge Isotope Laboratories, Inc. 2-Amino-5methylbenzenethiol (1b) and 2-amino-5-methoxybenzenethiol (1c) were synthesized according to the published procedures, the other chemicals were used as received.

2. Synthesis of 2-amino-5-methylbenzenethiol (1b) and 2-amino-5-methoxybenzenethiol (1c)

2-Amino-5-methylbenzenethiol (1b) and 2-amino-5-methoxybenzenethiol (1c) were synthesized according to the published procedures.¹⁻³ The mixture of 2-amino-6-methylbenzothiazole (10 mmol) and KOH (100 mmol) in H₂O (20 mL) was heated at 120 °C. The mixture was kept on reflux for 24 h and then cooled to room temperature. The mixture was filtered to remove the scraps and the filtrate was neutralized by acetic acid (50% in water) to pH = 6. Finally, the precipitate was collected by filtration and the target compound 1b was obtained as a light yellow solid. Similarly, compound 1c was obtained by the same method using 2-amino-6-methoxybenzothiazole as raw material and it was a yellow green solid.

3. Synthesis of benzothiazoles

The cyclization of 2-aminothiophenol by CO_2 in the presence of hydrosilane was conducted in a 22 ml Teflonlined stainless steel autoclave equipped with a magnetic stirrer. In a typical experiment to synthesize benzothiazole, 2-aminothiophenol (2 mmol, 0.2504 g), DBN (1 equiv, 0.2483 g), Et₂SiH₂ (1.5 equiv, 0.2645 g) and NMP (2 mL) were successively added into the reactor, and then CO_2 was charged into the reactor until the desired pressure (5 MPa) at room temperature. Subsequently, the reactor was moved into an oil bath of desired temperature (150°C) and the stirrer started. After a certain time (24 h), the reactor was moved to ice water and CO_2 was slowly released. The product yields were determined by ¹H NMR using 4-nitroacetophenone as the internal standard of the crude mixture.

Similarly, the other benzothiazole derivatives were obtained using the corresponding substituted 2aminothiophenols as the substrates. The pure products were obtained via column chromatography separation and characterized by NMR. The yields were the isolated products. ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) study was carried out with a Bruker Avance III 400 HD spectrometer with DMSO-d₆ as the solvent at ambient temperature.

4. NMR data of the as-prepared products

The characterization data for the as-prepared products were identical to the previously reported in the literature.

Compound 2 (benzothiazolone):

¹H NMR (400 MHz, DMSO) δ 11.87 (s, 1H), 7.54 (d, *J* = 7.9 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.11 (d, *J* = 4.9 Hz, 2H).

¹³C NMR (100 MHz, DMSO) δ 170.47, 136.79, 126.85, 123.76, 123.14, 123.04, 111.94.

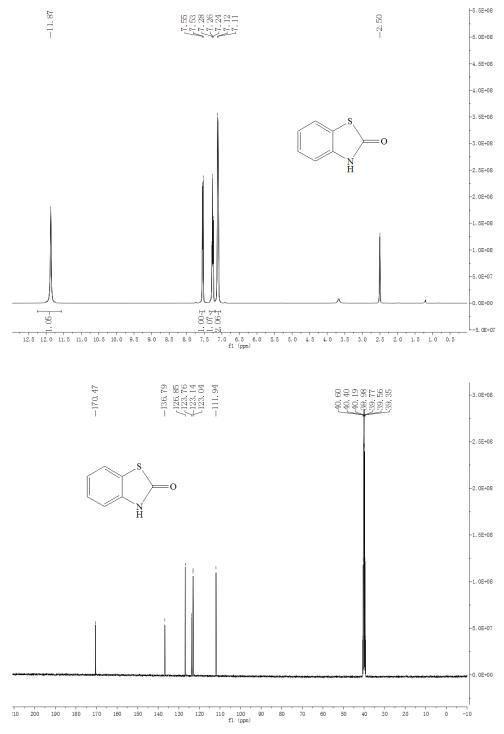
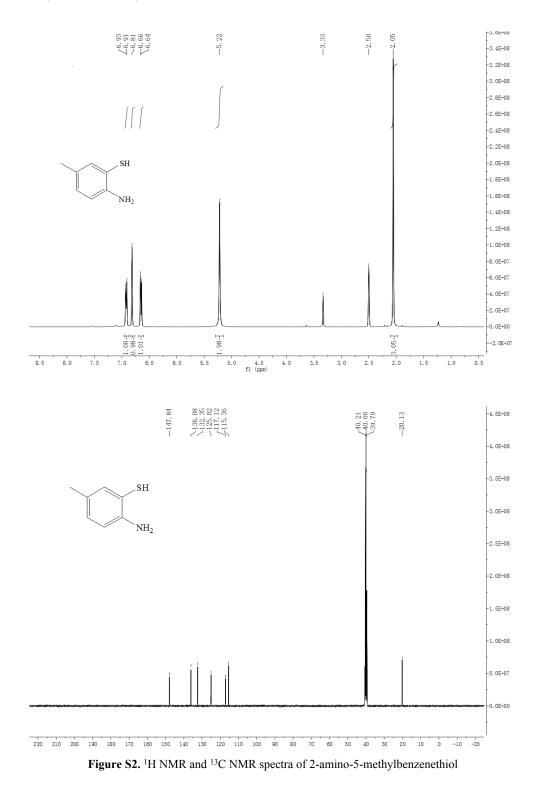



Figure S1. ¹H NMR and ¹³C NMR spectra of benzothiazolone

Compound 1b (2-amino-5-methylbenzenethiol):

¹H NMR (400 MHz, DMSO) δ 6.92 (d, *J* = 8.1 Hz, 1H), 6.81 (s, 1H), 6.65 (d, *J* = 8.1 Hz, 1H), 5.22 (s, 2H), 2.05 (s, 3H).

¹³C NMR (100 MHz, DMSO) δ 147.84, 136.08, 132.35, 125.02, 117.12, 115.36, 20.13.

Compound 1c (2-amino-5-methoxybenzenethiol):

¹H NMR (400 MHz, DMSO) δ 6.78 (dd, *J* = 8.8, 2.8 Hz, 1H), 6.72 (d, *J* = 8.8 Hz, 1H), 6.61 (d, *J* = 2.8 Hz, 1H), 5.05 (s, 2H), 3.54 (s, 3H).

¹³C NMR (100 MHz, DMSO) δ 150.60, 144.15, 119.12, 119.00, 117.56, 116.61, 55.74.

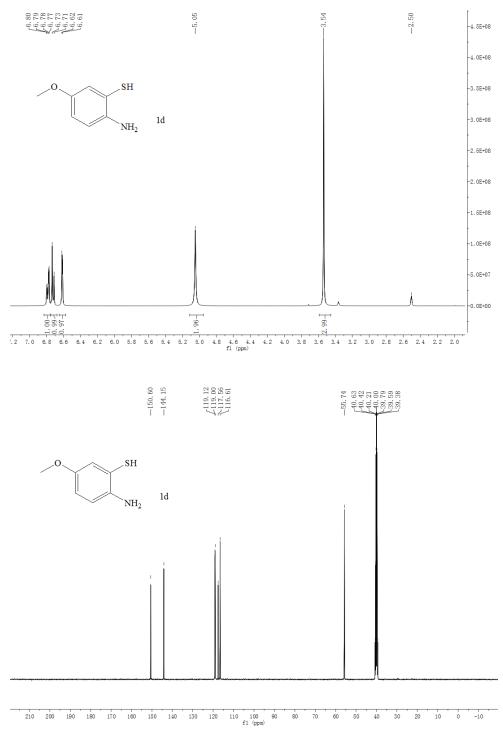


Figure S3. ¹H NMR and ¹³C NMR spectra of 2-amino-5-methoxybenzenethiol

Compound 2A (benzothiazole):

¹H NMR (400 MHz, DMSO) δ 9.41 (s, 1H), 8.12 (dd, *J* = 8.1, 2.8 Hz, 2H), 7.48 (m, 2H). ¹³C NMR (100 MHz, DMSO) δ 156.26, 153.50, 134.03, 126.50, 125.80, 123.48, 122.79.

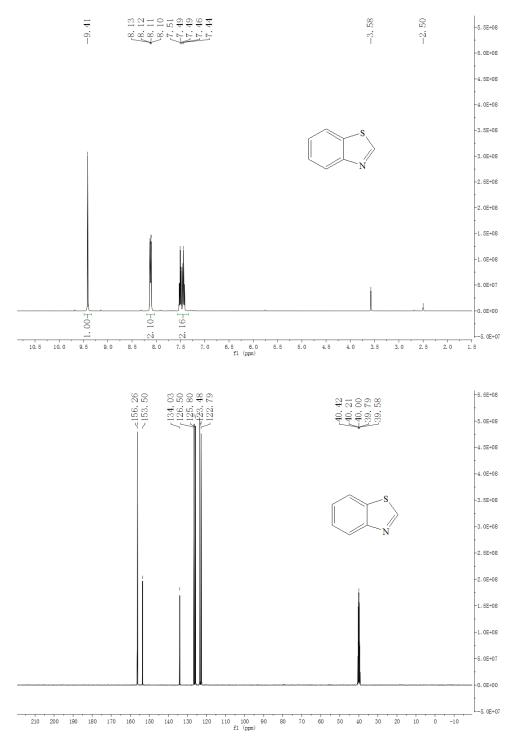


Figure S4. ¹H NMR and ¹³C NMR spectra of benzothiazole

Compound 2B (5-methylbenzothiazole):

¹H NMR (400 MHz, DMSO) δ 9.29 (s, 1H), 8.04-7.84 (m, 2H), 7.33 (d, J = 7.8 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, DMSO) δ 155.24, 151.71, 135.62, 134.19, 128.13, 123.00, 122.35, 21.44.

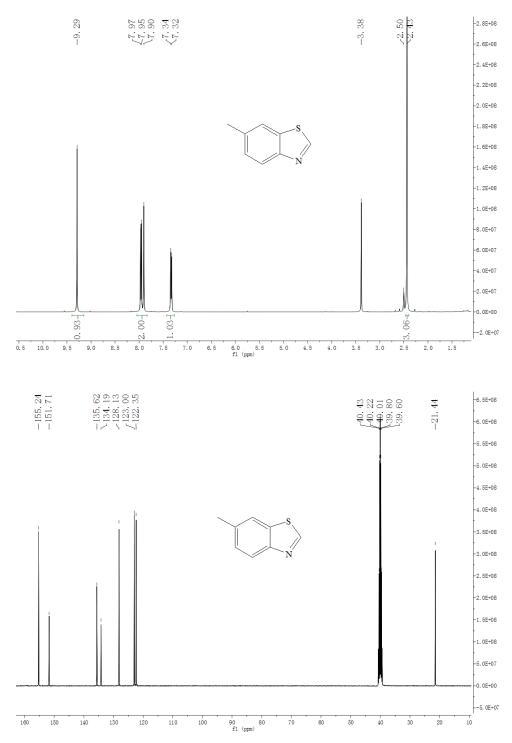


Figure S5. ¹H NMR and ¹³C NMR spectra of 5-methylbenzothiazole

Compound 2C (5-methoxybenzothiazole):

¹H NMR (400 MHz, DMSO) δ 9.18 (s, 1H), 7.96 (d, *J* = 8.9 Hz, 1H), 7.72 (d, *J* = 2.5 Hz, 1H), 7.13 (dd, *J* = 8.9, 2.5 Hz, 1H), 3.84 (s, 3H).

¹³C NMR (100 MHz, DMSO) δ 157.97, 153.78, 148.01, 135.53, 123.89, 116.15, 105.20, 56.17.

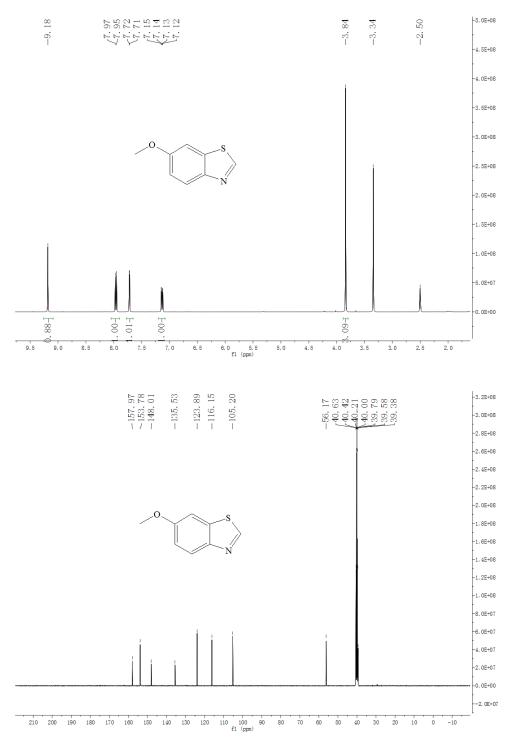


Figure S6. ¹H NMR and ¹³C NMR spectra of 5-methoxybenzothiazole

Compound 2D (5- bromobenzothiazole):

¹H NMR (400 MHz, DMSO) δ 9.40 (s, 1H), 8.47 (d, *J* = 1.8 Hz, 1H), 8.03 (d, *J* = 8.7 Hz, 1H), 7.69 (dd, *J* = 8.7, 1.9 Hz, 1H).

¹³C NMR (100 MHz, DMSO) δ 157.79, 152.57, 136.22, 129.83, 125.55, 125.03, 118.73.

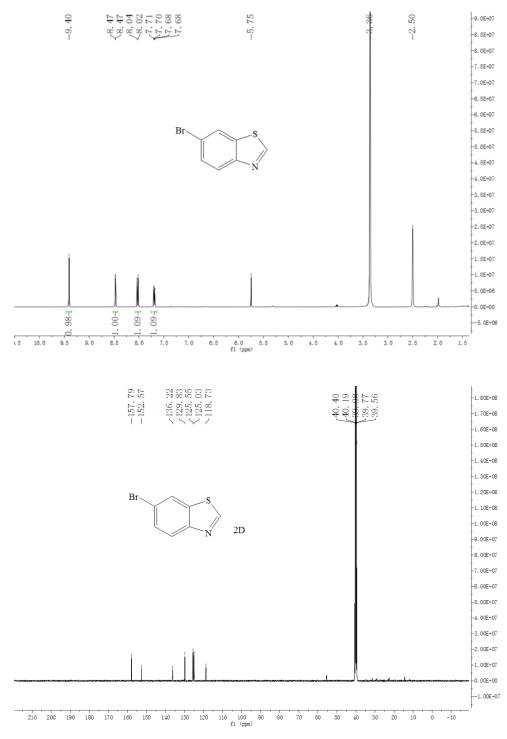


Figure S7. ¹H NMR and ¹³C NMR spectra of 5- bromobenzothiazole

Compound 2E (6-chlorobenzothiazole):

¹H NMR (400 MHz, DMSO) δ 9.47 (s, 1H), 8.19 (dd, J = 16.2, 5.2 Hz, 2H), 7.54 (dd, J = 8.6, 1.9 Hz, 1H). ¹³C NMR (100 MHz, DMSO) δ 159.10, 154.47, 132.93, 131.49, 126.11, 124.48, 122.96.

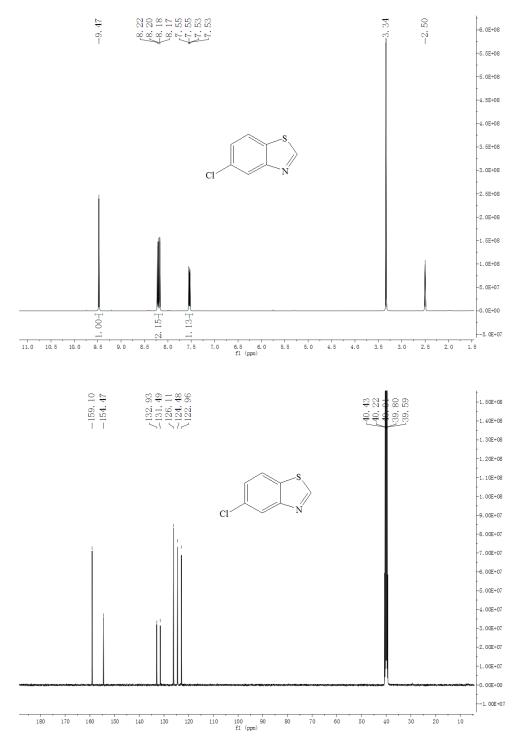


Figure S8. ¹H NMR and ¹³C NMR spectra of 6-chlorobenzothiazole

Compound 2F (5-aminobenzothiazole):

¹H NMR (400 MHz, DMSO) δ 8.87 (s, 1H), 7.70 (d, *J* = 8.7 Hz, 1H), 7.11 (d, *J* = 2.0 Hz, 1H), 6.79 (dd, *J* = 8.7, 2.1 Hz, 1H), 5.38 (s, 2H).

¹³C NMR (100 MHz, DMSO) δ 149.61, 147.78, 145.25, 135.51, 123.55, 115.38, 104.26.

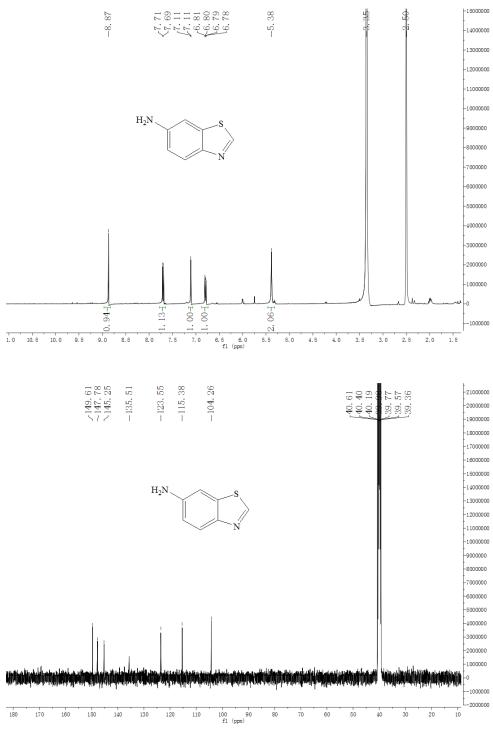


Figure S9. ¹H NMR and ¹³C NMR spectra of 5-aminobenzothiazole

5. References

- S. Tzanopoulou, M. Sagnou, M. Paravatou-Petsotas, E. Gourni, G. Loudos, S. Xanthopoulos, D. Lafkas, H. Kiaris, A. Varvarigou, I. C. Pirmettis, M. Papadopoulos and M. Pelecanou, *J. Med. Chem.*, 2010, 53, 4633-4641.
- 2 M. Cui, X. Wang, P. Yu, J. Zhang, Z. Li, X. Zhang, Y. Yang, M. Ono, H. Jia, H. Saji and B. Liu, *J. Med. Chem.*, 2012, **55**, 9283-9296.
- 3 C. A. Mathis, Y. Wang, D. P. Holt, G.-F. Huang, M. L. Debnath and W. E. Klunk, J. Med. Chem., 2003, 46, 2740-2754.