Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Isophthalonitrile (IPN) Hydrogenation over K modified Ni-Co Supported Catalysts: Catalyst Characterization and Performance Evaluation

Chang Liu, Tiefeng Wang*

Beijing Key Laboratory of Green Reaction Engineering and Technology

Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China

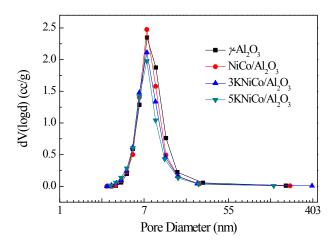
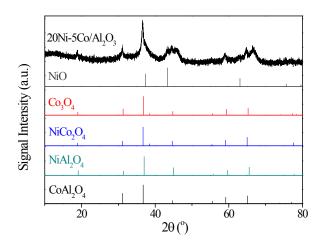
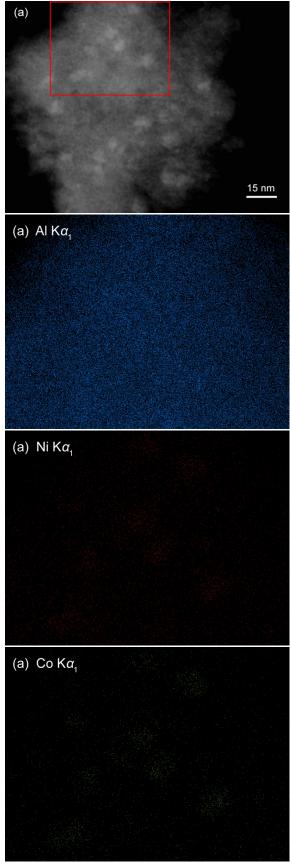

*Corresponding author: 86-10-62794132, wangtf@tsinghua.edu.cn

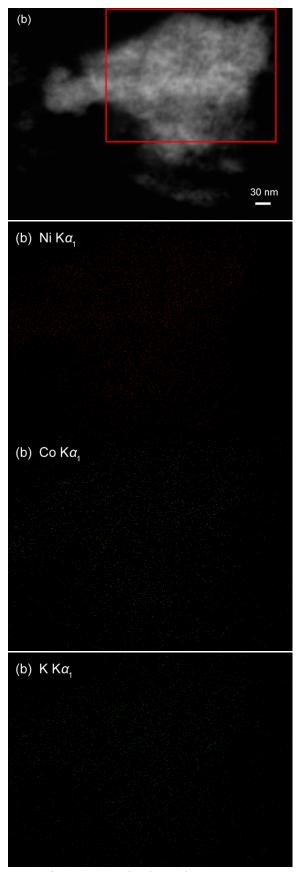
Table S1. Acidity and reaction results of wKNiCo/SiO₂ and NiCo/SiO₂


Catalyst	Acidity (mmol NH ₃ g ⁻¹)	Reaction results ^a	
		$k_{\rm r}(10^{-2}{\rm mol^{0.2}L^{-0.2}min^{-1}})$	$S_{m ext{-}\mathrm{XDA}}(\%)$
SiO ₂ ^b	0.014	/	/
NiCo/SiO ₂	0.061	2.6	45.8
0.5NiCo/SiO ₂	0.016	2.5	60.7
1KNiCo/SiO ₂	0.007	2.7	91.3
2KNiCo/SiO ₂	0.007	0.45	91.0

^a Reaction conditions: 80 °C, 6.0 MPa, 5 g catalyst of 200~400 μ m, 80 mL of toluene and 20 mL of methanol as solvent, 2.9 g of IPN feed, 0.086 g of NaOH, 180 mL min⁻¹ H₂ gas flow, and stirring speed of 800 rpm.

 $^{^{\}text{b}}\,\text{The SiO}_2$ sample was calcined at 400 $^{\text{o}}\text{C}$ for 4h before analysis.


Fig. S1. Pore size distribution of γ -Al₂O₃, NiCo/Al₂O₃, and wKNiCo/Al₂O₃ (w = 3, 5)


 $\textbf{Fig. S2.} \ \, \text{XRD profile of } 20 \text{Ni-5Co/Al}_2\text{O}_3 \ \, \text{and the standard spectra of NiO, } \text{Co}_3\text{O}_4, \, \text{NiCo}_2\text{O}_4, \, \text{NiCo$

NiAl₂O₄, and CoAl₂O₄.

The phase analysis was conducted on Jade 6 by matching the XRD profile of the catalyst with the standard spectra in the database.

Fig. S3. (a) HAADF TEM image (part in the red square was tested by EDS) and EDS surface scanning results of NiCo/Al₂O₃

Fig. S3. (b) HAADF TEM image (part in the red square was tested by EDS) and EDS surface scanning results of 3KNiCo/Al₂O₃

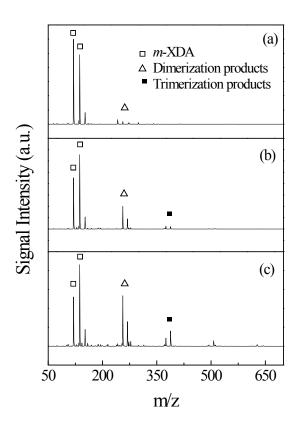


Fig. S4. Typical MS spectra of the final liquid samples

(a) product with 99.9% *m*-XDA selectivity (over 3KNiCo/Al₂O₃); (b) product with 45.5% *m*-XDA selectivity (over NiCo/Al₂O₃); (c) product with 28.5% *m*-XDA selectivity (over another catalyst not included in Table 1)