Electronic Supplementary Information (ESI)

RSC Advances

Electrochemical preparation of Fe oxide-based catalysts for the synthesis of nanocarbons

Sofía Pérez-Villar,* Javier Carretero-González

CIC EnergiGUNE, Alava Technology Park, Miñano, Álava, 01510, Spain E-mail: s_pv_es@yahoo.es.

Contents

Fig. 1S Linear sweep voltammetry for (a) anhydrous $FeCl_2$, $Fe(NO_3)_3.9H_2O$ and $FeCl_3.6H_2O$ baths at room temperature, 50 °C and 100 °C. The working electrode is the Al-Mg mesh, the counter is a platinum foil and the reference electrode is the standard Ag/AgCl.

Fig. 2S Potentiostatic current-time transients for (a) $FeCl_3.6H_2O$ and (b) $Fe(NO_3)_3.9H_2O$ baths at room temperature, 50 °C and 100 °C.

Fig. 3S SEM images of carbon nanostructures grown on Al-Mg substrate. Fe-based catalyst synthesized in a FeCl₂ bath at 50 °C (a) in a FeCl₃.6H₂O bath at room temperature (b) and Fe(NO₃)₃.9H₂O bath at 50 °C (c).

Fig. 4S SEM and EDS of a Fe-based catalyst without grown of C nanofilaments on the substrate (upper) and on the particle (bottom) after CVD.

Table 1S D and G band positions and its intensity ratio for the different carbonaceous materials.

Fig. 1S Linear sweep voltammetry for (a) anhydrous $FeCl_2$, $Fe(NO_3)_3.9H_2O$ and $FeCl_3.6H_2O$ baths at room temperature, 50 °C and 100 °C. The working electrode is the Al-Mg mesh, the counter is a platinum foil and the reference electrode is the standard Ag/AgCl.

Fig. 2S Potentiostatic current-time transients for (a) $FeCl_3.6H_2O$ and (b) $Fe(NO_3)_3.9H_2O$ baths at room temperature, 50 °C and 100 °C.

Fig. 3S SEM images of carbon nanostructures grown on Al-Mg substrate. Fe-based catalyst synthezed (a) in a FeCl₃.6H₂O bath at room temperature (b) and Fe(NO₃)₃.9H₂O bath at 50 $^{\circ}$ C (c).

Fig. 4S SEM of a Fe-based catalyst without grown of C nanofilaments after CVD. EDS analysis on the substrate (upper) and on the particle (bottom).

Bath-based SAMPLES	D (A _{1g}) (cm ⁻¹)	G (E _{2g2}) (cm ⁻¹)	I _D /I _G
Fe(NO ₃) ₃ .9H ₂ O, 50 ºC	1346	1601	0.84
FeCl ₃ , RT	1342	1605	0.78
FeCl₂, 50 ºC	1341	1603	0.75
Other ED samples	1348	1588	0.97
Carbon black	1348	1588	0.87
MWCNT	1348	1588	0.68

Table 1S D and G band positions and its intensity ratio for the different carbonaceous materials.