Supporting Information

Facile Synthesis of Graphene Clamped SnO₂ Nanostructured Materials for Lithium-Ion Batteries

Yanzhong Hong,¹ Jianyin Zhang,¹ Zhiyong Wang,^{1*} Joseph J. Stankovich,² and Xianbo Jin^{1,2*}

¹College of Chemistry and Molecular Sciences, Hubei Key Laboratory of

Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P.R. China.

²Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

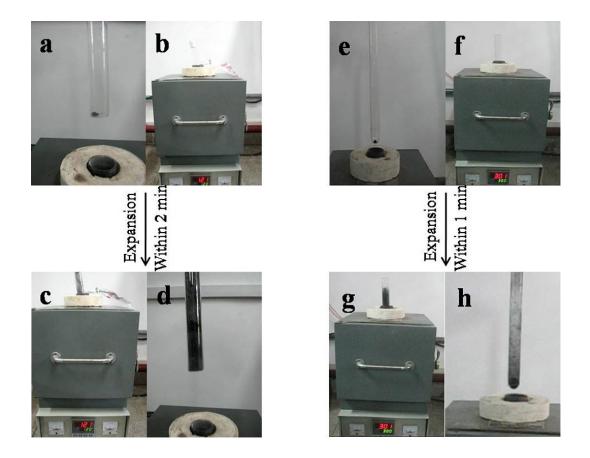


Fig. S1. Images a – d show the images before (a,b) and after (c, d) the expansion of SIGO at 120 $^{\circ}$ C within 2 minutes; Images e – f show the images before (e,f) and after (g, h) the expansion of SnO₂/SIGO at 300 $^{\circ}$ C within 1 minute.

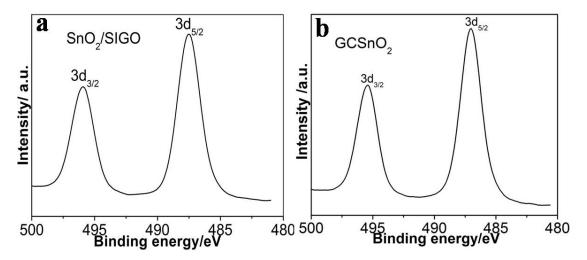


Fig. S2. a and b are the high resolution Sn 3d spectrums of SnO₂/SIGO and GCSnO₂, respectively.

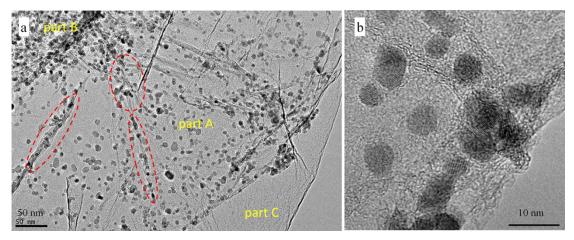


Fig. S3. a, typical TEM image of the $GCSnO_2$ and b, one high magnification observation of the rim of part A in (a).

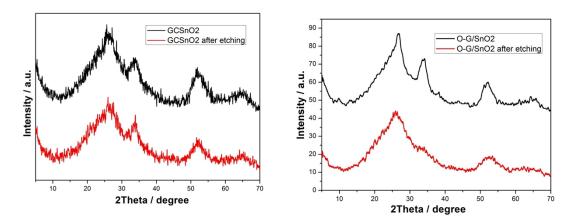


Fig. S4. The XRD patterns of the $GCSnO_2$ (a) and $O-G/SnO_2$ (b) before and after etching in 5 M HCl for 3 h under ultrasonic.

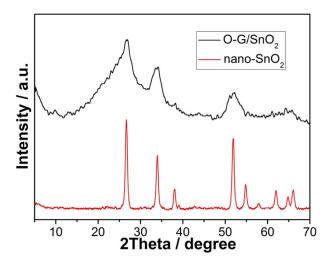


Fig. S5. The X-ray diffraction (XRD) patterns of the nano-SnO₂ and O-G/SnO₂.

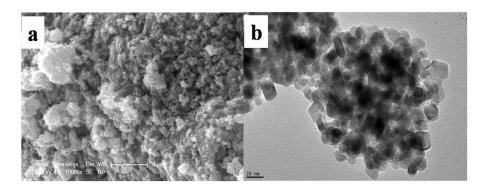


Fig. 6. SEM (a) and TEM (b) images of the nano-SnO₂.

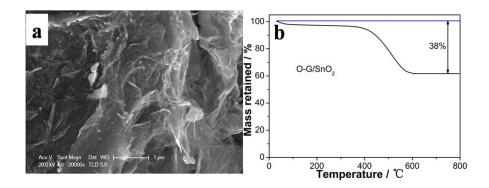


Fig. S7. The SEM image (a) and Thermo-gravimetric Analysis (b) of the O-G/SnO₂.

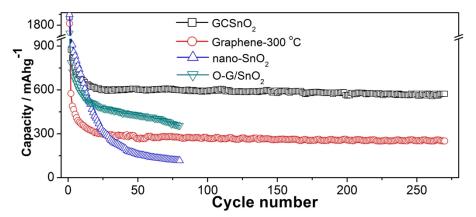


Fig. S8. A comparison of the Cycling performances of $GCSnO_2$, graphene-300°C, nano-SnO₂ and O-G/SnO₂.

Table S1. Performance of typical graphene/SnO ₂ composite materials for lithium batteries during
cycling with an upper potential limit of 2 V versus the lithium electrode.

Component	Test Condition	Initial Capacity / mAh g ⁻¹ (the first cycle Efficiency)	Remaining Capacity / mAh g ⁻¹	Decay Rate (%)	Ref
RGO/SnO ₂	50mA/g 0.005-2.00V	1080mAh/g (50.4%)	649mAh/g (30 th)	1.33%	23
SnO ₂ -graphene	100mA/g 0.01-2.00V	819mAh/g (49%)	626mAh/g (50 th)	0.47%	24
SnO ₂ /graphene	50mA/g 0.05-2.00V	810mAh/g (43%)	570mAh/g (30 th)	1%	32
SnO ₂ /graphene	67mA/g 0.01-2.00V	978mAh/g (57.5%)	840mAh/g (30 th)	0.46%	49
SnO ₂ -GNS	0.2C 0.005-2.00V	950mAh/g (68%)	550mAh/g (100 th)	0.44%	50
GCSnO ₂	200mA/g 0.02-2.00v	858mAh/g (42%)	572mAh/g (270 th)	0.11%	This Work