Electronic Supplementary Information (ESI) for

Two-step synthesis of boron and nitrogen co-doped graphene as

synergistically enhanced catalyst for oxygen reduction reaction

Jiapo Tai⁺, Jiantong Hu⁺, Zhongxin Chen and Hongbin Lu*

State Key Laboratory of Molecular Engineering of Polymers, and Department of Macromolecular Science, Fudan University, 220 Handan Road, Shanghai, 200433, China. Tel/Fax: 86-21-5566 4589. To whom correspondence should be addressed: hongbinlu@fudan.edu.cn.

This PDF includes:

- 1. O_{1s} XPS and C_{1s} XPS of NG and BNG;
- 2. A comparison between peaks designation in XPS N_{1s} and B_{1s} spectra;
- 3. TGA results of NG and BNG;
- 4. CV curves of commercial Pt/C catalyst in O_2/N_2 -saturated 0.1 mol L⁻¹ KOH;
- 5. A comparison of our BNG and other reported metal-free ORR catalysts;
- 6. K-L curve with reference plots for 2e⁻ and 4e⁻ pathways

1. O_{1s} XPS and C_{1s} XPS of NG and BNG:

Fig. S1 (a) XPS- O_{1s} and (b) XPS- C_{1s} of NG; (c) XPS- O_{1s} and (d) XPS- C_{1s} of BNG

2. A comparison between peaks designation in N_{1s} and B_{1s} spectra:

XPS Measurements and Data Analysis:

X-ray photoelectron spectra (XPS) were carried out on a PHI Quantera SXMTM scanning X-ray MicroprobeTM with monochromatic Al K_a radiation (hv = 1486.6 eV). The deconvolution of peaks was conducted using the XPS Peak processing software version 4.1 (Chemistry, CUHK), along with a Shirley background subtraction, a Gaussian sum function, and an iterative least-squares optimization algorithm. Before fitting, all binding energies were corrected according to the C_{1s} hydrocarbon peak at 284.8 eV. The position and full width half maximum (FWHM) of peaks in **Figure 2 & S1** were determined on the basis of the results reported in literature and the spectrometer condition we used. The total fitting error is found to be smaller than 10 %.

Peak Designations of N_{1s} spectra in the literature:

N _{1s} spectrum	Ι	Π	III	IV		
Moieties	Pyridinic	Pyrrolic	Graphitic			
Binding Energy	398.7	400.1	401.7			
Reference	L.	L. Fang, Y. Chen and L. Chen, ACS Nano, 2011, 5, 9611-9618				
Moieties	Pyridinic	Pyrrolic	Graphitic	Pyridinic Oxide		
Binding Energy	399.0	400.3	401.1	402.8		
Reference	Y. Shao, S. Zha	ng, M. H. Engelha	rd, G. Li, G. Shao, Y.	Wang, J. Liu, I. A. Aksay and Y.		
		Lin, J. Mat	er. Chem., 2010, 20 , 7	491-7496.		
Moieties	Pyridinic	Pyrrolic	Graphitic			
Binding Energy	398.6	399.8	401.0			
Reference	G. Ma, R. Jia, J.	Zhao, Z. Wang, C	C. Song, S. Jia and Z. Z	Zhu, J. Phys. Chem. C, 2011, 115,		
			25148-25154			
Moieties	Pyridinic	Pyrrolic	Graphitic			
Binding Energy	398.5	400	401.5			
Reference	C. V.	Rao and Y. Ishika	wa, J. Phys. Chem. C,	2012, 116 , 4340–4346		
Moieties	Pyridinic	Pyrrolic	Graphitic	Pyridinic Oxide		
Binding Energy	398.7	400.3	401.4	$402\sim405$		
Reference	D. Long, W. L	D. Long, W. Li, L. Ling, J. Miyawaki, I. Mochida and S. H. Yoon, Langmuir, 2010, 26,				
			16096–16102			
Moieties	Pyridinic	Pyrrolic	Graphitic	Pyridinic Oxide		
Binding Energy	398.5	399.8	401.3	403.6		
Reference	S. Li, Y. Hu, Q	S. Li, Y. Hu, Q. Xu, J. Sun, B. Hou and Y. Zhang, J. Power Sources, 2012, 213, 265-269				
Moieties	Pyridinic Pyrrolic and Graphitic Pyridinic Oxide					
Binding Energy	398.6	$400 \sim 402$ $402 \sim 404$				
Reference	<u> </u>	H. Choi, S. H. Par	k and S. I. Woo, ACS	Nano, 2012, 6, 7084–7091		
Moieties	Pyridinic	Pyrrolic	Graphitic			
Binding Energy	398.0	400.0	401.3			
Reference	H. Wang,	X. Bo, C. Luhana a	and L. Guo, <i>Electroche</i>	em. Commun., 2012, 21 , 5-8		
Moieties	Pyridinic	Pyrrolic	Graphitic	Pyridinic Oxide		
Binding Energy	398.2	399.5	401.1	402.6		
Reference	Z. H. Sheng, L. S	Shao, J. J. Chen, W	. J. Bao, F. B. Wang a	and X. H. Xia, ACS Nano, 2011, 5,		
	4350-4358.					
Moieties	Pyridinic	Pyrrolic	Graphitic	N-Oxide		
Binding Energy	397.95	398.76	401.05	405.30		
Reference	U. B. Nasini, V. G. Bairi, S. K., Ramasahayam, S. E. Bourdo, T. Viswanathan and A. U.					
		Shaikh, ChemElectroChem, 2014, 1, 573-579				

Table S1 A comparison of peaks designation in N1s spectra for N-doped or B, N co-doped graphene

Moieties	Pyridinic	Amine	Pyrrolic	Protonated N or Graphitic			
Binding Energy	398.6	399.4	400.1	401.4			
Reference	P. Chen, T. Y. Xiao, Y. H. Qian, S. S. Li and S. H. Yu, Adv. Mater, 2013, 25, 3192-3196.						
Moieties	BN Pyridinic Graphitic Pyridinic Oxide						
Binding Energy	397.9	398.6	400.9	403.0			
Reference	C. H. Choi, M. W	. Chung, H. C. Kw	on, S. H. Park and S	S. I Woo, J. Mater. Chem. A, 2013, 1,			
			3694–3699				
Moieties	Pyridinic	Pyrrolic	Graphitic	Pyridinic Oxide			
Binding Energy	398.1	399.6	401.2	403.0			
Reference	Z. Lin, M. Song, Y. Ding, Y. Liu, M. Liu and C. Wong, Phys. Chem. Chem. Phys., 2012, 14,						
	3381–3387						
Moieties	Pyridinic	Pyrrolic	Graphitic	N-Oxide			
Binding Energy	398.7	400.1	401.7	> 402			
Reference	J. Wu, D. Zhang, Y. Wang, B. Hou, J. Power Sources, 2013. 227, 185-190						
Moieties	Pyridinic		Graphitic	Pyridinic Oxide			
Binding Energy	398.5		401.0	402.4			
Reference	W. Wei, H. Liang, K. Parvez, X. Zhuang, X. Feng and K. Müllen, Angew. Chem. Int. Edit.,						
	2014, 126 , 1596–1600.						
Moieties	Pyridinic	Pyrrolic	Graphitic				
Binding Energy	398.4	399.8	401.7				
Reference			This manuscript				

Peak Designations of B_s spectra in the literature:

Table S2 A comparison of peaks designation in B_{1s} spectra for B, N co-doped graphene

B _{1s} spectrum	Ι	II	III	IV	
Moieties	BN ₂ C/BC ₃	BC ₂ O/ <i>h</i> -BN	-BN BN ₃ /BCO ₂ B-		
Binding Energy	189.5 eV	190.6 eV	192 eV	193 eV	
Reference	Ji. Ozaki, N. I	Kimura, T. Anahara an	d A. Oya, <i>Carbon</i> , 200	07, 45 , 1847-1853.	
Moieties		BC ₂ O	BCO_2	B-O	
Binding Energy		190.8 eV	191.5 eV	192.7 eV	
Reference	J. Zhu, C. He, Y. Li, S. Kang and P. K. Shen, J. Mater. Chem. A, 2013, 1, 14700-147				
Moieties	B-C		B-N	B-O	
Binding Energy	189 eV		191 eV	192 eV	
Reference	Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu and J. Qu,				
	Phys. Chem. Chem. Phys., 2013, 15, 12220-12226.				

Moieties	BC ₃	BC ₂ O/BCO ₂		B-O
Binding Energy	190 eV	191.2 eV		192.7 eV
Reference	This manuscript			

3. TGA results of NG and BNG:

Fig. S2 TGA curves of NG and BNG (both samples were tested in nitrogen atmosphere , with the heating rate of 20 °C min⁻¹)

Current Density (mA cm⁻²) 1 0 -2 Pt/C -3 02 -4 N₂ -5 -0.8 -0.4 -0.2 0.0 0.2 -1.0 -0.6 0.4 E vs. Ag/AgCI (V)

4. CV curves of commercial Pt/C catalyst in 0.1 mol L⁻¹ KOH:

Fig. S3 CV curves of commercial Pt/C catalyst in O_2/N_2 saturated 0.1 mol L⁻¹ KOH solution (scanning rate = 100 mV s⁻¹)

5. A comparison of some metal-free ORR catalysts reported in literature:

Table S3	A comparasion of the	major performance	s of some meta	l-free ORR	catalysts r	reported
in literature	(all the electrocatalyti	c characterization w	vere conducted	in 0.1 mol	L ⁻¹ KOH s	olution;

Items	Doping Levels	Catalyst Loading (mg cm ⁻²)	Onset Potential (V vs. Ag/AgCl)	Current density at -0.8V (mA cm ⁻²)	Ref.
N-doped graphene	N: 6.2 at.%	0.08	-0.3	3.6 (1200 rpm)	1
N-doped graphene	N: 7.25 at.%	0.14	-0.2	3.2 (1200 rpm)	2
N-doped graphene	N: 5 at.%	0.1	-0.2	4.5 (1900 rpm)	3
B-doped graphene	B: 3 at.%	Not mentioned	-0.12	5 (1600 rpm)	4
B,N co-doped graphene	N: 4.42 at.% B: 2.17 at.%	0.28	-0.16	5.2 (1500 rpm)	5
B,N co-doped graphene	N: 4.5 at.% B: 3 at.%	Not mentioned	-0.16	5.5 (1600 rpm)	6
B,N co-doped graphene	N: 11 at.% B:12 at.%	0.01 mg on the electrode	Not mentioned	5.1 (Rate not mentioned)	7
B,N co-doped graphene	N: 6.8 at.% B: 4.8 at.%	0.1	-0.17	5.5 (1600 rpm)	This study

the data in the table were calulated from the RDE test).

6. K-L curve with reference plots for 2e⁻ and 4e⁻ pathways:

Fig. S4 Koutecky-Levich curve fitted from the data of RDE test. (potential = -0.4 V)

References:

- 1 Z. Lin, G. Waller, Y. Liu, M. Liu and C.-P. Wong, Adv. Energy Mater., 2012, 2, 884-888.
- 2 J. Wu, D. Zhang, Y. Wang and B. Hou, J. Power Sources, 2013, 227, 185-190.
- 3 M. Vikkisk, I. Kruusenberg, U. Joost, E. Shulga, I. Kink and K. Tammeveski, *Appl. Catal.*, *B*, 2014, **147**, 369-376.
- 4 Z. Zuo, Z. Jiang and A. Manthiram, J. Mater. Chem. A, 2013, 1, 13476-13483.
- 5 Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec and S. Z. Qiao, *Angew. Chem., Int. Ed.*, 2013, **52**, 3110-3116.
- 6 Y. Xue, D. Yu, L. Dai, R. Wang, D. Li, A. Roy, F. Lu, H. Chen, Y. Liu and J. Qu, *Phys. Chem. Chem. Phys.*, 2013, **15**, 12220-12226.
- 7 S. Wang, L. Zhang, Z. Xia, A. Roy, D. W. Chang, J.-B. Baek and L. Dai, *Angew. Chem.*, *Int. Ed.*, 2012, **51**, 4209-4212.