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This Supplement consists of the following sections and has some overlap with the main paper: 

 

S-1 Physical structure of tandem cell 

S-2 Analytical model of tandem cell using the Fokker-Planck (F-P) equation 

S-3 One-dimensional F-P model of DNP 

S-4 Three-dimensional F-P model of trans1/cis2 

S-5 Analysis of behavior at an interface (cis2/DNP; DNP/trans2) 

S-6 Effect of negative field over DNP 

S-7 Additional implementation notes 

S-8 Other two-pore systems 

 

S-1 TANDEM CELL: PHYSICAL STRUCTURE 

As noted in the main text, exonuclease sequencing1 of DNA using a conventional cell is faced with a number of problems, which 

the tandem cell is designed to alleviate. A schematic of the tandem cell with two nanopores in tandem (Figure 1 in the main 

paper) is reproduced here as Figure S-1a. It has the structure [cis1, upstream nanopore (UNP), trans1=cis2, downstream nanopore 

(DNP), trans2]. A voltage difference V05 is applied between cis1 and trans2 using electrodes at the top of cis1 and the bottom of 

trans2, which results in a negatively charged strand of DNA being drawn from cis1 to and through UNP.  An exonuclease 

enzyme covalently bonded to the downstream side of UNP cleaves the leading base from the DNA strand that has threaded 

through UNP. The negatively charged base moves toward DNP under the influence of the applied voltage and is detected as it 

passes through DNP where it is slowed down by a chemical adapter (biological DNP) or a profiled voltage (see Figure S-4 below, 

also Figure 4 in the main paper) applied over a segment of DNP (synthetic DNP). The voltage profile over the tandem cell that 

results from V05 is shown in Figure S-1b. 

 

 
Figure S-1.  Tandem cell with five pipelined stages: cis1, UNP (depicted here as an AHL pore),  trans1= cis2, DNP 

(depicted here as a solid-state pore), and trans2. Dimensions considered: 1) cis1: box of height 1 μm, side 1 μm; 2) UNP: 

AHL pore of length 8-10 nm, diameter 2 nm;  3) trans1/cis2: tapered box of length 1 μm tapering from 1 μm
2
 cross-section 

to 4 nm
2
; 4) DNP: solid-state pore of length 10-20 nm and diameter 2 nm, or AHL pore as in UNP; 5)  trans2: box of height 

1 μm, side 1 μm. Electrodes assumed inserted at top of cis1 and bottom of trans2. 

 

S-2  ANALYTICAL MODEL 

The behavior of a cleaved base as it translocates through trans1/cis2 and DNP can be studied via the trajectory of a particle 

whose propagator function G(x,y,z,t) is given by a linear Fokker-Planck (F-P) equation in one or three dimensions. Such methods 

are commonly used in the study of translocation of biomolecules through a nanopore, see for example2 and references therein. 

The F-P equation is used for piecewise analysis of the propagator in two sections: trans1/cis2 and DNP . Each section is modeled 
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independently in its own coordinate system and the transition occurring at the interface between the two stages studied 

separately. The coordinate systems used are shown in Figure S-2. Standard methods from partial differential equations and 

Laplace transforms are used.3,4 The main quantity of interest here is φ(t), the pdf of the first passage time T (= the time for a 

cleaved base to translocate through the pore and be detected by the end of its translocation), which is independent of the 

coordinate system used.  

 

S-3 TRANSLOCATION THROUGH DNP (Detection) 

A one-dimensional approximation is applied to DNP (Figure S-2a: line segment 0 ≤ z ≤ L34; t ≥ 0). A cleaved base is treated as a 

particle that is released at z = 0, t = 0; reflected at z = 0, t > 0; and captured at z = L34, t > 0. The trajectory of the cleaved base as 

it passes through DNP is described by the function G(z,t) which satisfies 

 

  ∂G/∂t + vz ∂G/∂z = D ∂2G/∂z2,  z ∈  [0, L=L34]    (1) 

 

 
Figure S-2.  Coordinate systems for different stages of the tandem cell (a) Stage 4, (b) Stage 3, (c) Stage 3. Dimensions 

used: (a) L= 8-10 nm; (b) L = 1 μm, wp = 1 μm; (c) Lt = 1 μm, wt = 1 μm, wp = 2 nm. 

 

with the following initial and boundary value conditions: 

 

I.V. The particle is released at z = 0 and time t = 0: 

 

   G(0,t=0) = δ(z)        (2) 

 

B.C.1 The particle is captured at z = L: 

 

   G(L,t) = 0        (3) 

 

B.C.2 The particle is reflected at z = L: 

 

   D ∂G(z,t)/∂z |z = 0 = vz G(z,t)       (4) 

 

Here D is the diffusion constant and vz, the drift velocity through DNP, is given by vz = μV34/L, where μ is the nucleotide 

mobility (assumed to be the same for all four base types). Following standard procedures φ(t), the pdf of the first passage time 

(translocation time) for a particle to diffuse-drift from z = 0 to z = L and get absorbed at z = L, can be obtained as 

 

  φ(t) = (2/(√(π4Dt3) [ ∑k=0
∞ ((2k+1)L + vzt) exp(-((2k+1)L + vzt)

2/(4Dt)) + ∑k=0
∞ ((2k+1)L - vzt) exp(-

((2k+1)L + vzt)
2/(4Dt))        

            (5) 
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φ(t) can be computed numerically but the series oscillates and converges very slowly. Therefore an alternative closed-form 

approach based on the earlier referenced model2 of exonuclease-based sequencing is used. In that model a base is assumed to be 

cleaved above the pore of a conventional cell with the structure [cis, membrane-with-nanopore, trans] and drop into the pore. 

There is a non-zero probability of a cleaved base not entering the pore (given by a rate constant κ) and getting lost to diffusion. 

Setting κ to 0 in that model reduces it to the boundary value problem in Equations 1-4. Also the drift velocity vz is not restricted 

to the downstream direction (cis to trans),2 it can be positive or negative. 

Modifying the main result in the earlier model,2 the Laplace transform of the first passage time of a cleaved base passing through 

DNP is  

 

  φ*(s) = exp(α/2) / [cosh(y) + α/2  sinh(y)/y]      (6) 

 

where 

 

 α = vzL/D; y2 = α2/4 + 2τs;  τ = L2/2D      (7) 

 

The mean E(T) is 

 

  E(T) = -dφ*(s)/ds |s=0 = (L2/Dα)[1 - (1/α) (1 - exp(- α))]     (8) 

 

Similarly, the second moment E(T2) can be obtained as: 

 

  E(T2) = d2φ*(s)/ds2 |s=0 =  2(L2/Dα2)2(α2/2 + 3α exp(-α) - 2 + exp(-α) + exp(-2α))    

 (9) 

 

From here the variance σ2(T) = E(T2) - E2(T) is obtained as 

 

  σ2(T) = (L2/Dα2)2 (2α + 4α exp(-α) - 5 + 4 exp(-α) + exp(-2α))    (10) 

 

where σ is the standard deviation. 

For vz = 0, these three statistics are given by 

 

  E0(T) = L2/2D;  E0(T
2) = (5/12) (L4/D2);   σ0

2(T) = (1/6) (L4/D2) (11) 

  

Figure S-3 shows the mean and standard deviation of T for different voltages across a DNP with L = 10 nm, D = 3 × 10-10 m2/s, 

and μ = 2.4 × 10-8 m2/Vs. 
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Figure S-3.  Mean and standard deviation of time for particle to translocate from time of entry into DNP (negligible cross-

section and length L =  8-10 nm) to time of exit into trans2. Parameter values used: mononucleotide mobility μ = 2.4 × 10-8 
m2/Vs, diffusion constant D = 3 × 10-10 m2/s. Calculations are for typical absolute potential difference in the range 0.1-0.3 V. 

 

S-4 TRANSLOCATION THROUGH trans1/cis2 (Delivery) 

For simplicity the trans1/cis2 compartment is assumed to be a rectangular box-shaped region (Figure 2b:  box 0 ≤ z ≤ L23, -d/2 ≤ 

x, y ≤ d/2; t ≥ 0). A particle is released at the top (0,0,0) at t = 0, reflected at the sides (x, y = ± d/2) and the top (z = 0) at t > 0, 

and translocates to the bottom (z = L23) at t > 0, where it is 'absorbed'.  'Absorption' here means that the particle moves into DNP 

without regressing into trans1/cis2. Its behavior in DNP is described by the model pertaining to that section (see preceding 

analysis). The propagator function G(x,y,z,t) is given by a linear Fokker-Planck equation in three dimensions: 

 

  ∂G/∂t + vx  ∂G/∂x + vy ∂G/∂y + vz ∂G/∂z = D (∂2G/∂x2 + ∂2G/∂y2 + ∂2G/∂z2)   (12) 

 

where vx, vy, and vz are the drift velocities in the x, y, and z directions, and D is the diffusion coefficient. In trans1/cis2 there is no 

drift potential in the x and y directions (Figure S-2b) so that 

 

  vx = vy = 0         (13) 

 

in Equation 12.  

The following initial value (I.V.) and boundary values (B.C.) apply: 

1) The particle is released at position (0,0,0) at time t = 0. This is represented by a delta function δ(x,y,z): 

 

I.V.  G(0,0,0, t=0) = δ(x,y,z) = δ(x) δ(y) δ(z)       (14) 

 

2) It is reflected at the sides of trans1/cis2 at t > 0: 

 

B.C. 1   D ∂G(x,y,z,t)/∂x | x = ±d/2 = 0        (15) 

 

B.C. 2   D ∂G(x,y,z,t)/∂y | y = ±d/2 = 0        (16) 

 

3) It is reflected at the top of trans1/cis2: 

 

B.C. 3   D ∂G(x,y,z t)/∂z |z = 0 = vz G(x,y,0,t),   t > 0      (17) 

 

4) It is absorbed at the bottom of trans1/cis2 at t > 0: 

 

B.C. 4  G(x,y,L23=L,t) = 0         (18) 

 

Since the initial value is a separable function of x, y, and z (Equation 14), the above boundary value problem in three dimensions 

can be considered mathematically as three boundary value problems,3 one in each dimension, and the propagator function viewed 

as the product of three independent propagator functions: 

 

  G(x,y,z,t) = Gx(x,t) Gy(y,t) Gz(z,t)        (19) 

 

where 

 

  Gx(x,t) = (2/d) ∑m=0
∞ cos αmx/√D exp(-αm

2t)      (20) 

 

  Gy(y,t) = (2/d) ∑n=0
∞ cos βnx/√D exp(-βn

2t)      (21) 

and 

  Gz(z,t) = (2D/L) exp(vzz/2D+vz
2/4Dt) ∑k=1

∞ sin ωkL sin ωk(z-L) exp(-Dωm
2t )/N(ωk)    

            (22) 

with 

  αm = 2mπ√D/d  βn =  2nπ√D/d      (23) 

and    

  N(ωk) = (D/vz)(exp(vzL/D)-1) - {(vz/D)(exp(vzL/D) - cos 2ωkL) -  2ωk sin 2ωkL)}/((vz/D)2 + 4ωm
2) 

            (24) 

 

If detection is defined to have occurred by the time the particle reaches z = L, the first passage time is the time the particle crosses 

z = L at any x and y, -d/2 ≤ x,y ≤ d/2, so that its pdf φ(t) can be written as 
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  φ(t) =  ∫-d/2
d/2  ∫-d/2

d/2 (-D dG(x,y,z,t)/dz |z = L) dx dy = ∫-d/2
d/2  Gx(x,t) dx ∫-d/2

d/2  Gy(y,t) dy φz(t) 

 (25) 

 

where 

 

  φz(t) = 2D exp(vzz/2D-vz
2/4Dt) ∑k=1

∞ ωk sin ωkL exp(-Dωm
2t )/N(ωk)     (26) 

 

Similar to separation of the three-dimensional boundary value problem defined by Equations 12-18 into three independent one-

dimensional boundary value problems, one can consider in physical terms a separation of diffusive effects in the three directions. 

With free diffusion given by Equations 12-13 and only the initial condition in Equation 14, the diffusion has a spatial mean of 

(0,0,0) and is independent in the three directions. Adding the reflective boundaries z = 0, x = ±d/2, and y = ±d/2 (see Figure S-1) 

and a positive drift potential (V23 > 0) causes the mean of the first passage time to z = L (which is an 'absorbing' boundary, where 

detection is considered to occur for any x and y; -d/2 ≤ x,y ≤ d/2) to be less than the mean time when V23 = 0. Considering φz(t) 

in isolation, its distribution is in effect the one-dimensional first passage time distribution with mean E(T = Tz) and standard 

deviation σ = σz. 

To see if diffusion in the x and y directions has any effect on G(x,y,z,t) consider the factor ∫-d/2
d/2  Gx(x,t) dx in Equation 25 (the 

behavior of Gy(y,t) is identical owing to the symmetry in x and y).   To compute it the method of images4 can be used. Thus start 

without any boundary conditions on x, which corresponds to free diffusion in x. Gx(x,t) is given by the heat kernel: 

 

  Gx(x,t) = (1/(√(π4Dt)) exp(-x2/(4Dt)),  -∞ < x < ∞    (27) 

 

This function is repeatedly reflected at x = ±d/2 resulting finally in 

 

  Gx(x,t) =  (1/√(π4Dt)[exp(-x2/4Dt) + ∑k=1
∞ exp(-(x+kd)2/4Dt) + ∑k=1

∞ exp(-(x-kd)2/4Dt)]; -d/2 ≤ x ≤ d/2 

            (28) 

 

Because probability is conserved, the integral of Gx(x,t) over -d/2 ≤ x ≤ d/2 is the area under the heat kernel function over -∞ < x 

< ∞, which is 1. A similar result holds for G(y,t) by symmetry. Hence Equation 25 reduces to 

 

  φ(t) = φz(t)          (29) 

 

Thus diffusion in the x and y dimensions does not affect the translocation time distribution in the z direction (assuming of course 

that arrival of the particle at any (x,y,z=L) is tantamount to detection). Figure S-4 shows the dependence on pore voltage of the 

mean E(T) and standard deviation σ(T) of the translocation time through trans1/cis2 for L = 1 μm. 
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Figure S-4.  Mean and standard deviation of translocation time for particle (cleaved base) released by exonuclease at top of 

trans1/cis2 (= 3-dimensional box with height 1 μm and cross-section 1 μm2) to move to entrance of DNP. Parameter values 

used: mononucleotide mobility μ = 2.4 × 10-8 m2/Vs, diffusion constant D = 3 × 10-10 m2/s. Calculations for cell voltages of 
0.1-0.3 V, with ~1-2 mV dropping across trans1/cis2. 

 

S-5 BEHAVIOR AT THE INTERFACE BETWEEN TWO SECTIONS 

The Fokker-Planck model described above is a piecewise model that does not consider the behavior of the particle at the interface 

between two sections. In essence a particle jumps back and forth at the interface because of diffusion. This behavior can be 

studied by considering the probability currents at some fixed point on either side of the interface. 

Consider the interface trans1/cis2-DNP at (x,y,L23±). If there is an absorbing barrier at L23- then the probability function on the 

trans1/cis2 side would be 

 

  G3(x,y,L23-,t) = 0         (30) 

 

On the DNP side if there is a reflecting barrier the probability current would be  

 

  J4(x,y,L23+,t) = vz4 G4(x,y, L23+,t) - D ∂G4(x,y,L23+,t)/∂z = 0    

 (31) 

 

  vz3 = μV23/L23  vz4 = μV34/L34       (32) 

  

But there is really no barrier. The particle oscillates randomly at the interface before eventually passing into DNP, such passage 

being aided directly by the positively directed drift potentials in both compartments and indirectly by the reflecting boundaries in 

trans1/cis2. Thus 

 

  J3(x,y,L23-,t) = vz3 G3(x,y,L23-,t) - D ∂G3(x,y,L23-,t)/∂z ≠ 0     (33) 

 

and  

 

  J4(x,y,L23+,t) = vz4 G4(x,y, L23+,t) - D ∂G4(x,y,L23+,t)/∂z ≠ 0    

 (34) 

 

Continuity requires 

 

  J3(x,y,L23-,t)=J4(x,y,L23+,t)        (35) 
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In order for the particle to translocate successfully through DNP in the z direction so that it can be detected inside DNP, the net 

probability current at L23 must be in the positive z direction. This can be achieved with a sufficiently large V05, as long as the 

resulting electric field is below the breakdown limit of ~70 MV/m (assuming 1 mole KCl for the electrolyte). Thus 

 

  J34(x,y,L23,t) = J3(x,y,L23-,t) = J4(x,y,L23+,t) > 0      (36) 

 

The behavior at the interface between DNP and trans2 is similar. 

The tapered geometry of trans1/cis2 in Figure S-1a aids drift of the particle into DNP. It can be modeled with a Fokker-Planck 

equation just as in Equation 12 but with a trapezoidal frustum boundary. The resulting system of equations is not as easily solved 

as Equations 12 through 18 although it is amenable to numerical solution. One obvious result is that the translocation time is 

decreased. Similar to the taper in trans1/cis2 aiding capture of the base at the entrance of DNP the abrupt increase in diameter 

from DNP to trans2 decreases the probability of a detected particle regressing into DNP from trans2. One can also think of these 

two behaviors in terms of entropy barriers5: the taper in trans1/cis2 decreases the barrier for entry into DNP (below what it would 

be with a rectangular box), while the step change going from DNP to trans2 effectively increases the barrier for a base trying to 

regress into DNP. 

 

S-6 NEGATIVE FIELD OVER DNP 

Let the electric fields over the five sections of the tandem cell be E01, E12, E23, E34, and E45. Consider DNP in isolation. With a 

negative electric field E34 over DNP of length L34 = 10 nm, D = 3 × 10-10 m2/s, and μ = 2.4 × 10-8 m2 /Vs, the data in Figure S-5 

show an increase in the mean translocation time, which indicates slowdown, but it is also accompanied by a significant increase 

in the variance. With V34 approaching -0.25 V, the mean has increased by 7 orders of magnitude over the mean for V34 = 0.25 V, 

and the standard deviation is closely tracking the mean, indicating that diffusion has started to take over. 

For this approach to work: 1) A cleaved base entering DNP must not regress into trans1/cis2; 2) A detected base exiting into 

trans2 must not regress into DNP; 3) The probability that there is more than one base in DNP must approach 0. To satisfy 

condition 1 a base moving from trans1/cis2 into DNP has to experience a positive drift field at the interface. This requires that 

E23 and E34 both be positive. To satisfy condition 2 a base moving from DNP into trans2 has to experience a positive drift field at 

the interface. This requires that E34 and E45 both be positive. Slowing down the base inside DNP requires E34 to be negative. All 

three field sign conditions may be satisfied if L34 is split into three parts L34-0 34-1, L34-1 34-2, and L34-2 34-3 with respective electric 

fields E34-0 34-1, E34-1 34-2, and E34-2 34-3 such that E34-0 34-1 > 0, E34-1 34-2 < 0, and E34-2 34-3 > 0.  Such an electric field profile is 

shown in Figure S-5. (Condition 3 is examined later in this section and shown to be satisfied theoretically.) 

 

 
Figure S-5  Example of a profiled voltage over DNP in which the pore length is divided into three segments L34-1, L34-2, and 

L34-3, with lengths L34-1 + L34-2 + L34-3 = L34. Electric field is positive over L34-1 and L34-3, negative over L34-2. (The voltages 

themselves need not be negative. Thus V34-1 - V34-0 > 0, V34-3 - V34-2 > 0, and V34-2 - V34-1 < 0.) Also V34-0 > V23  (voltage 
across trans1/cis2) and V34-3 < V45  (voltage across trans2). 

 

The earlier model and analysis of DNP may be extended to the behavior of a base that experiences this kind of profiled potential 

when inside DNP. There is a tradeoff among the need to reduce the translocation speed through DNP, the need to prevent 

regression from DNP into trans1/cis2, and the need to prevent regression into DNP from trans2. Let L34-0 34-1 = a L34,  L34-1 34-2 = 

bL34, and L34-2 34-3 = cL34, with a + b + c = 1. The first and second conditions require E34-0 34-1 and E34-2 34-3 both to be sufficiently 

positive (see Equation 36 and associated discussion above). Since two electrodes are required to define the internal negative 

potential segment, each of a, b, and c has a minimum value given by amin = bmin = cmin = ew + es, where ew = width of electrode 
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and es = interelectrode spacing. This spacing along with the applied voltages V34-1 and V34-2 can be used to determine the span of 

the negative electric field over DNP (Figure S-5). (The voltages themselves need not be negative, it is the potential difference, 

and hence the resulting electric field, that has to be negative.) 

With this modification DNP can be represented as [Si pore, electrode, Si pore, electrode, Si pore]. It may be possible to achieve 

the desired field profile if ultra thin graphene sheets (which have been studied for their potential use in strand sequencing) are 

used for the electrodes. Figure S-6 shows a schematic of the required modification, where voltages are applied to electrodes V0, 

V34-1, V34-2, and V5. Voltage drops are assumed to be similar to those noted in the earlier referenced exonuclease model2. Thus 

49% of the potential difference V0 34-1 drops across each of UNP and the segment L34-0 34-1 and 0.5% across each of cis1 and 

trans1/cis2. A negative electric field exists across the segment L34-1 34-2 with V34-1 > V34-2. With V4 > V34-2, 99% of the potential 

difference V34-2 4 drops across the segment L34-2 34-3 and 1% across trans2. 

 

 

 
Figure S-6. Tandem cell modified for negative field over segment of DNP.  Graphene electrodes laterally inserted into 

DNP. Negative field applied over middle segment of DNP through graphene electrodes set to voltages V3-1 and V3-2. Thus 

V0 < V3-1,  V3-2 < V3-1, V3-2 < V5, where V0 and V5 represent electrodes in cis1 and trans2. 

 
The optimum electric field profile over DNP can be obtained by experiment. Here an estimate is obtained by using Equations 8 

and 10 from the one-dimensional problem while ignoring the transitional behavior at the two ends.  Let V34-0 34-1 = V34-1 - V34-0 = 

Va, V34-1 34-2 = Vb, and V34-2 34-3 = Vc. With Va = Vc = 0.05 V and Vb = -0.18 V the mean and standard deviation of the 

translocation time over each of the three segments of a nanopore of length L34 = 10 nm are shown in Table S-1 for different 

values of a and b. The translocation over the segment [aL34, aL34 + bL34] is seen to be considerably slowed down by the negative 

field, which also dominates the total translocation time over DNP. 

 

Table S-1 

Translocation times over positive and negative electric field segments of DNP 

 

a = c 

(positive field 
segment) 

Mean 

(10-8 s) 

Standard deviation  

(10-8 s) 

b 

(negative field 
segment) 

Mean 

(10-3 s) 

Standard deviation  

(10-3 s) 

0.1 0.063 0.038 0.8 1.84574 1.84573 

0.2 0.252 0.152 0.6 1.038229 1.038222 

0.3 0.566 0.344 0.4 0.461435 0.461432 

0.4 1.006 0.611 0.2 0.1153588 0.1153580 

 
S-7 ADDITIONAL IMPLEMENTATION NOTES 

Slowdown over a synthetic DNP using a negative field  

Similar to graphene sheets, Si++ or molybdenum sulphide (MoS2) layers with nanopores6 may be used. A graphene/MoS2 sheet 

with nanopore by itself can be used for exonuclease sequencing with a tandem cell. The cell structure would then be [cis1, UNP, 

trans1=cis2, DNP, trans2], where DNP is [Si pore, transverse electrode, Si pore, graphene/MoS2 ribbon/sheet, Si pore, transverse 

electrode, Si pore]. The translocating cleaved base is identified by the level of the transverse current through the graphene/MoS2 

sheet. Negative fields may also be used in strand sequencing. The translocation speed can be controlled by embedding the 

graphene/MoS2  layer in the negative-field segment of a solid-state nanopore with an electric field profile similar to that in Figure 
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S-5. A cell would then have the structure [cis, Si pore, transverse electrode, Si pore, graphene/MoS2  ribbon/sheet, Si pore, 

transverse electrode, Si pore, trans], where the large thickness of the Si pore, by itself a disadvantage in strand sequencing, is no 

longer important. In both strand and exonuclease sequencing using the above approach, the μA-level transverse currents through 

a graphene or molybdenum disulphide sheet/nanoribbon plus the negative-field-based slowdown of strand or cleaved base could 

result in a lower detection bandwidth and S/N ratios that are significantly higher than with a method that relies only on axial ionic 

pore currents < 100 pA. 

Slowdown over a biological DNP (AHL with adapter) 

With AHL for DNP and a covalently attached cyclodextrin adapter used for slowdown, residence rates obtained from 

exonuclease sequencing experiments1 require changes in some of the device parameters to satisfy the two conditions discussed in 

the main text. The first condition, namely that two successively cleaved bases stay in order when they enter DNP (Equation 1 in 

the main text) is 

 

  T > (μT1+3σT1) - max(0, μT2-3σT2)       (37) 

 

The second condition is the sufficient condition for two bases not being in the pore at the same time (Equation 2 in the main text): 

 

 T + max(0,μT2-3σT2) > μT1 + 3σT1 + μP + 3σP      (38) 

 

where T is the interval (which is a random variable) between two successively cleaved bases 1 and 2. (That the second condition 

subsumes the first can be seen by comparing Equations 37 and 38.) 

Assume two successive cleaving intervals T1 and T2 to be independent and identically distributed (i.i.d.). Let μT1 = μT2 = mean 

translocation time through trans1/cis2, μP = mean translocation time of a base through DNP, and σT1 = σT2 and σP the 

corresponding standard deviations. Experiments in exonuclease sequencing with a conventional cell1 and a nanopore of length 10 

nm equipped with a cyclodextrin adapter give the mean residence time as μP ≈ 10 ms. (Standard deviation data are not available.) 

If σP is assumed to be ~5 ms then with the previously used data for trans1/cis2 (L23 = 1μm, V23 = 1.6 mV, μT1 = μT2 = 1.6 ms, and 

σT1 = σT2 = 1.3 ms) and V34 = 0.18 V, the value of Tmin from Equation 38 is ~35 ms. While this is in the range of enzyme turnover 

rates7 (10-80 ms), it also reduces the leeway available with sequencing design parameters. To get Tmin below the minimum of the 

range for better design parameter control requires reducing the residence time of a nucleotide in the adapter either by reducing the 

potential difference or by altering the molecular structure of the adapter. The former has to be balanced against the resulting 

increase in the  probability of regression of a detected base from trans2 into DNP. 

Voltage drift 

One way to solve the voltage drift problem is to use a stable reference voltage against which the drift is tracked and the difference 

subtracted from the recorded data (similar to the moving average in trend analysis of time series data). Alternatively the 

trans1/cis2 and trans2 compartments and DNP can be drained periodically and refilled with electrolyte. To prevent the 

occurrence of deletion errors due to cleaved bases still in transit through trans1/cis2 while draining is taking place, the draining 

step may be preceded by retraction of the strand in UNP (achieved by temporarily lowering or reversing the potential V05) and 

pausing until the cleaved bases in transit have passed into DNP and been detected through their characteristic blockade levels. A 

floating electrode at the top of trans1/cis2 which is active only when retraction of the DNA strand is required may also be used 

for this purpose. 

Accuracy with a biological DNP (AHL) 

In exonuclease sequencing studies with a conventional cell1 using AHL for DNP and an optimum potential difference of ~0.18 V 

over DNP the discrimination accuracy averaged over all four base types (including methylated types) is reported as 99.8%. This 

is based on a Gaussian fit of the data. If, however, a Voigt distribution is used the accuracy drops to 92%.2 

 

S-8 OTHER TWO-PORE SYSTEMS 

At least three other two-pore systems are known. One of them uses two parallel pores bridging a single cis-trans pair (with the 

structure [cis, P1-P2, trans]),8 the objective being simultaneous study of two different samples. The second has been used by the 

company Oxford Nanopore to increase the accuracy of their strand sequencing9 technique. Using a pair of pores (named poreA 

and poreK) with identical samples independently translocating through them results in a pair of non-correlated signal traces that 

are used to improve base calling. The third uses two pores to control the translocation of DNA.10 A time-varying potential 

difference is used to ratchet the DNA back and forth through the two pores leading to current variations that are used in base 

identification. All three systems are materially and procedurally different from the tandem cell approach which is based on the 

structure [cis UNP trans/cis DNP trans] wherein a single sample goes through both pores (strand through the first, cleaved bases 

through the second). 
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