Electronic Supplementary Information (ESI)

A Simple and Efficient Synthesis of Isocoumarins and Alkylidenephthalides from 3-(1-Hydroxycarbethoxy/alkyl)phthalides with DEAD/PPh₃/TBHP System

Sunita K. Gadakh and Arumugam Sudalai*

Chemical Engineering & Process Development Division, National Chemical Laboratory, Dr.HomiBhabha Road, Pune-411008, Maharashtra. India *Corresponding author: Tel.: +91 20 25902547; Fax: +91 20 25902676; e-mail: <u>a.sudalai@ncl.res.in</u>

Table of Contents

Sr. No.	Description	Page No.
1.	General description	2
2.	Experimental procedure and spectral data	2-12
3.	¹ H and ¹³ C-NMR charts of new compounds	13-40

1. General description:

Solvents were purified and dried by standard procedures before use; petroleum ether of boiling range 60-80 °C was used. Melting points were uncorrected and recorded on a Buchi B-542 instrument. ¹H NMR and ¹³C NMR spectra were recorded on Brucker AC-200 spectrometer unless mentioned otherwise. Infrared spectra were recorded on Shimadzu FTIR-8400 spectrometer and absorption is expressed in cm⁻¹. Elemental analysis was carried on a Carlo Erba CHNS-O analyzer. Purification was done using column chromatography (230-400 mesh).

2. Experimental procedure:

General experimental procedure for the preperation of 3-substituted isocoumarins (5a-j) and alkylidenephthalides (6k-t):

To a stirred solution of 3-(1-hydroxycarbethoxy/alkyl)phthalides derivatives (**4a-t**) (1 mmol) in THF (10 mL) was added diethyl azodicarboxylate (DEAD, 10 mol%), PPh₃ (1.5 mmol) and *tert*butyl hydroperoxide (2 mmol) and the mixture allowed to stirred at 25 °C for 0.5 to 2 h. After the completion of reaction (as monitored by TLC), THF was distilled out to give the crude product. Chromatographic purification of the crude product [silica gel (230-400 mesh) and petrolium ether: ethyl acetate (7:3) as eluent] afforded 3-substituted isocoumarin derivatives (**5a-j**) or 3substituted alkylidene phthalides (**6k-t**) as the case may be.

Ethyl 6-methoxy-1-oxo-1*H*-isochromene-3-carboxylate (5b):

Yield: 96%; colorless solid; **mp**:128-129 °C; **IR** (CHCl₃, cm⁻¹): υ_{max} 669, 749, 785, 827, 1072, 1257, 1510, 1601, 1720, 1736, 2934, 3067; ¹H **NMR** (200 MHz, CDCl₃): δ 1.42 (t, *J* = 7.1 Hz, 3H), 3.94 (s, 3H), 4.41 (q, *J* = 7.1 Hz, 2H), 6.96 (d, *J* = 2.5 Hz, 1H), 7.16 (dd, *J* = 8.9 and 2.6 Hz, 1H), 7.4 (s, 1H), 8.26 (d, *J* = 9.0 Hz, 1H); ¹³C **NMR** (50 MHz, CDCl₃): δ 14.3, 55.7, 62.2, 109.7, 112.0, 115.8, 118.6, 132.3, 137.4, 144.2, 160.2, 164.9; **Anal.** Calcd for C₁₃H₁₂O₅: C, 62.90; H, 4.87. Found: C, 62.87; H, 4.85 %.

Ethyl 5,6-dimethoxy-1-oxo-1*H*-isochromene-3-carboxylate (5c):

Yield: 92%; gum; **IR** (CHCl₃, cm⁻¹): v_{max} 695, 721, 997, 1018, 1119, 1194, 1261, 1360, 1437, 1473, 1592, 1655, 1719, 2943; ¹**H NMR** (200 MHz, CDCl₃): δ 1.42 (t, *J* = 7.3 Hz, 3H), 3.86 (s, 3H), 3.91 (s, 3H), 4.44 (q, *J* = 7.0 Hz, 2H), 6.96 (d, *J* = 8.9 Hz, 1H), 7.18 (s, 1H), 7.59 (d, *J* = 8.9 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 14.2, 61.6, 61.7, 65.2, 113.4, 121.8, 122.6, 131.0, 137.1, 152.2, 153.7, 162.2, 164.4; **Anal.** Calcd for C₁₄H₁₄O₆: C, 60.43; H, 5.07. Found: C, 60.57; H, 5.05 %.

Ethyl 6,8-dimethoxy-1-oxo-1*H*-isochromene-3-carboxylate (5d):

Yield: 92%; colorless solid; **mp**: 87-89 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 690, 711, 997, 1018, 1159, 1194, 1261, 1360, 1467, 1473, 1592, 1655, 1720, 2943; ¹H NMR (200 MHz, CDCl₃): δ 1.34 (t, *J* = 7.0 Hz, 3H), 3.86 (s, 3H), 3.92 (s, 3H), 4.33 (q, *J* = 7.0 Hz, 2H), 6.53 (d, *J* = 1.8 Hz, 1H), 6.58 (d, *J* = 1.8 Hz, 1H), 7.28 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 14.2, 55.8, 56.5, 62.2, 100.9, 102.3, 112.0, 120.4, 127.3, 135.7, 156.2, 163.5, 165.6; Anal. Calcd for C₁₄H₁₄O₆: C, 60.63; H, 5.07. Found: C, 60.75; H, 5.10 %.

Ethyl 6,7,8-trimethoxy-1-oxo-1*H*-isochromene-3-carboxylate (5e):

Yield: 90%; colorless solid; **mp**: 122-123 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 695, 721, 997, 1018, 1119, 1194, 1261, 1360, 1437, 1473, 1592, 1655, 1719, 2943; ¹**H NMR** (200 MHz, CDCl₃): δ 1.42 (t, *J* = 7.8 Hz, 3H), 3.96 (s, 1H), 3.97 (s, 1H), 3.99 (s, 1H), 4.44 (q, *J* = 7.2 Hz, 2H), 6.83 (s,1H), 7.17 (s, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 14.1, 55.9, 61.2, 62.0, 62.1, 105.0, 110.2, 131.5, 133.6, 134.5, 144.2, 154.8, 157.3, 159.3, 161.2; **Anal.** Calcd for C₁₅H₁₆O₇: C, 58.44; H, 5.23. Found: C, 58.57; H, 5.30 %.

Ethyl 8-(benzyloxy)-7-methoxy-1-oxo-1*H*-isochromene-3-carboxylate (5f):

BnO MeO CO₂Et

Yield: 92%; yellow solid; **mp**: 146-148 °C; **IR** (CHCl₃, cm⁻¹): υ_{max} 689, 765, 844, 1062, 1234, 1341, 1485, 1643, 1718, 1731, 2959, 3068; ¹**H NMR** (200 MHz, CDCl₃): δ 1.42 (t, *J* = 7.2 Hz, 3H), 4.01 (s, 3H), 4.40 (q, *J* = 7.1 Hz, 2H), 5.24 (s, 2H), 6.95 (s, 1H), 7.32-7.49 (m, 6H), 7.78 (s, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 14.3, 56.3, 62.0, 71.1, 108.0, 111.7, 112.0, 116.5, 127.7, 128.4, 128.8, 130.5, 135.6, 142.7, 150.8, 155.6, 160.5; **Anal**. Calcd for C₂₀H₁₈O₆: C, 67.79; H, 5.12. Found: C, 67.74; H, 5.15 %.

Ethyl 7-fluoro-1-oxo-1*H*-isochromene-3-carboxylate (5g):

Yield: 95%; colorless solid; **mp**: 122-123 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 892, 1026, 1256, 1439, 1573, 1640, 1715, 1726, 2930, 3048; ¹**H NMR** (200 MHz, CDCl₃): δ 1.43 (t, *J* = 7.1 Hz, 3H), 4.43 (q, *J* = 7.1 Hz, 2H), 7.22-7.38 (m, 2H), 7.42 (s, 1H), 8.38 (dd, *J* = 5.5 and 8.7 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 14.3, 62.5, 111.1 (d, *J* = 2.6 Hz), 113.2 (d, *J* = 22.5 Hz), 118.7 (d, *J* = 22.6 Hz), 119.3 (d, *J* = 2.6 Hz), 133.6 (d, *J* = 10.2 Hz), 137.8 (d, *J* = 10.2 Hz), 144.8, 159.6, 159.9, 166.9 (d, *J* = 256.3 Hz); **Anal**. Calcd for C₁₂H₉FO₄: C, 61.02; H, 3.84. Found: C, 61.1; H, 3.88 %.

Ethyl 5-oxo-5*H*-[1,3]dioxolo[4,5-g]isochromene-7-carboxylate (5h):

Yield: 95%; colorless solid; **mp**: 162-163 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 765, 832, 895, 955, 1065, 1160, 1341, 1482, 1643, 1718, 1724, 2928, 3054; ¹**H NMR** (200 MHz, CDCl₃): δ 1.42 (t, *J* = 7.8 Hz, 3H), 4.41 (q, *J* = 7.2 Hz, 2H), 6.16 (s, 2H), 6.93 (s, 1H), 7.36 (s, 1H), 7.68 (s, 1H); ¹³C **NMR** (50 MHz, CDCl₃): δ 14.2, 62.0, 102.7, 105.7, 108.1, 111.9, 118.2, 132.3, 142.6, 150.3, 153.7, 160.1; **Anal.** Calcd for C₁₃H₁₀O₆: C, 59.55; H, 3.84. Found: C, 59.57; H, 3.85 %.

Ethyl 7-nitro-1-oxo-1*H*-isochromene-3-carboxylate (5i):

Yield: 90%; yellow solid; **mp**: 162-166 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 699, 755, 804, 1062, 1224, 1349, 1485, 1653, 1719, 1721, 2950, 3078; ¹H NMR (200 MHz, CDCl₃): δ 1.45 (t, *J* = 7.2 Hz, 3H), 4.45 (q, *J* = 7.0, 2H), 7.56 (s, 1H), 8.42 (dd, *J* = 2.2 and 8.6 Hz, 1H), 8.45 (d, *J* = 2.1 Hz, 1H), 8.52 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 14.3, 62.8, 110.6, 122.5, 124.5, 126.7, 132.2, 136.4, 145.6, 151.8, 158.8, 159.4; **Anal.** Calcd for C₁₂H₉NO₆: C, 54.76; H, 3.45, N, 5.32. Found: C, 54.57; H, 3.41, N, 5.31 %.

Ethyl 1-oxo-1*H*-benzo[*h*]isochromene-3-carboxylate (5j):

Yield: 93%; colorless solid; **mp**: 164-165 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 680, 748, 819, 852, 1065, 1185, 1368, 1488, 1632, 1718, 1732, 2935, 3054; ¹**H NMR** (200 MHz, CDCl₃): δ 1.46 (t, *J* = 7.3 Hz, 3H), 4.45 (q, *J* = 7.5 Hz, 2H), 7.54-7.57 (m, 2H), 7.68 (dt, *J* = 7.8 and 1.3 Hz, 1H), 7.79 (dt, *J* = 7.7 and 1.5 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H); 8.18 (d, *J* = 8.9 Hz, 1H), 9.74 (d, *J* = 8.6 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 14.3, 62.3, 112.4, 117.3, 124.3, 127.1, 128.0, 128.8, 129.9, 131.5, 134.1, 136.7, 137.5, 144.8, 159.8, 160.0; **Anal.** Calcd for C₁₆H₁₂O₄: C, 71.64; H, 4.51. Found: C, 71.96; H, 4.59 %.

3-methyleneisobenzofuran-1(3H)-one (6k):

Yield: 95%; colorless solid; **mp**: 57-58 °C; IR (CHCl₃, cm⁻¹): v_{max} 956, 1018, 1278, 1478, 1784, 2930; ¹**H NMR** (200 MHz, CDCl₃): δ 5.24 (dd, *J* = 3.0 and 6.2 Hz, 2H), 7.57-7.62 (m, 1H), 7.72 (d, *J* = 4.0 Hz, 2H), 7.92 (d, *J* = 8.0 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 91.1, 120.6, 125.2, 130.4, 134.4, 139.0, 151.8, 166.8; **Anal.** Calcd for C₉H₆O₂: C, 73.97; H, 4.14. Found: C, 73.9; H, 4.12 %.

6-methoxy-3-methyleneisobenzofuran-1(3*H*)-one (6l):

MeO

Yield: 95%; colorless solid; **mp**: 87-88 °C; IR (CHCl₃, cm⁻¹): v_{max} 756, 1026, 1100, 1180, 1240, 1303, 1346, 1456, 1491, 1606, 1660, 1774, 2943, 3018; ¹**H NMR** (200 MHz, CDCl₃): δ 3.94 (s, 3H), 5.15 (d, *J* = 3.0 Hz, 1H), 5.18 (d, *J* = 2.9 Hz, 1H), 7.06-7.09 (m, 2H), 7.79 (dd, *J* = 7.9 and 1.2 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 55.9, 90.8, 103.7, 117.8, 118.5, 126.8, 141.6, 151.8, 165.0, 166.3; **Anal.** Calcd for C₁₀H₈O₃: C, 68.18; H, 4.58. Found: C, 68.16; H, 4.59 %.

5,6-dimethoxy-3-methyleneisobenzofuran-1(3H)-one (6m):

Yield: 94%; gum; **IR** (CHCl₃, cm⁻¹): v_{max} 1024, 1275, 1458, 1499, 1719, 1773, 2943; ¹H NMR (200 MHz, CDCl₃): δ 3.94 (s, 3H), 4.14 (s, 3H), 5.02 (d, *J* = 2.8 Hz, 1H), 5.06 (d, *J* = 2.9 Hz, 1H), 7.22 (d, *J* = 8.2 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 56.9, 62.5, 88.8, 115.3, 119.4, 121.4, 132.5, 148.1, 151.3, 153.7, 164.2; **Anal**. Calcd for C₁₁H₁₀O₄: C, 64.07; H, 4.89. Found: C, 64.2; H, 5.00 %.

6,7-dimethoxy-3-methyleneisobenzofuran-1(3H)-one (6n):

Yield: 93%; gum; **IR** (CHCl₃, cm⁻¹): v_{max} 1022, 1104, 1229, 1278, 1321, 1369, 1466, 1504, 1764, 2919; ¹H NMR (200 MHz, CDCl₃): δ 3.97 (s, 3H), 4.01 (s, 3H), 5.05 (d, *J* = 2.8 Hz, 1H), 5.13 (d, *J* = 2.9 Hz, 1H), 7.05 (s, 1H), 7.25 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 56.2, 56.7, 89.5, 101.5, 105.3, 117.8, 133.4, 151.8, 151.9, 155.1, 166.7; **Anal**. Calcd for C₁₁H₁₀O₄: C, 64.07; H, 4.89. Found: C, 64.10; H, 4.84 %.

5,7-dimethoxy-3-methyleneisobenzofuran-1(3H)-one (60):

Yield: 92%, colorless solid; **mp**: 228-229 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 779, 856, 1024, 1275, 1458, 1499, 1719, 1773, 2943; ¹**H NMR** (200 MHz, CDCl₃): δ 3.96 (s, 3H), 4.01 (s, 3H), 5.06 (d, *J* =

2.8 Hz, 1H), 5.12 (d, J = 2.9 Hz, 1H), 7.05 (s, 1H), 7.24 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 56.4, 56.4, 89.5, 101.5, 105.4, 118.0, 133.5, 151.9, 152.0, 155.2, 166.7; Anal. Calcd for C₁₁H₁₀O₄: C, 64.07; H, 4.89. Found: C, 64.10; H, 4.88 %.

5,6,7-trimethoxy-3-methyleneisobenzofuran-1(3H)-one (6p):

Yield: 94%; gum; **IR** (CHCl₃, cm⁻¹): v_{max} 1019, 1112, 1199, 1262, 1345, 1418, 1480, 1597, 1771, 2853, 2942; ¹H NMR (200 MHz, CDCl₃): δ 3.89 (s, 3H), 3.99 (s, 3H), 4.16 (s, 3H), 5.06 (d, *J* = 2.9 Hz, 1H), 5.11 (d, *J* = 3.2 Hz, 1H), 6.85 (s, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 56.4, 61.4, 62.2, 89.6, 97.7, 109.9, 136.3, 151.5, 151.9, 159.9; **Anal.** Calcd for C₁₂H₁₂O₅: C, 61.01; H, 5.12. Found: C, 61.01; H, 5.09 %.

5-(benzyloxy)-6-methoxy-3-methyleneisobenzofuran-1(3H)-one (6q):

Yield: 93%; colorless solid; **mp**: 235-236 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 980, 1035, 1136, 1182, 1273, 1352, 1415, 1482, 1588, 1775, 2953, 3040; ¹**H NMR** (200 MHz, CDCl₃): δ 4.01 (s, 3H), 5.0 (d, *J* = 2.9 Hz, 1H), 5.1 (d, *J* = 2.9 Hz, 1H), 5.20 (s, 2H) 7.1 (s, 1H), 7.28-7.5 (m, 7H); ¹³**C NMR** (50 MHz, CDCl₃): δ 56.3, 71.0, 89.5, 101.8, 107.2, 117.8, 127.4, 128.3, 128.7, 133.7, 135.6, 151.0, 151.8, 155.6, 166.6; **Anal.** Calcd for C₁₇H₁₄O₄: C, 72.33; H, 5.00. Found: C, 72.31; H, 5.04 %.

7-methylene-[1,3]dioxolo[4,5-*f*]isobenzofuran-5-(7*H*)-one (6r):

Yield: 94%; colorless solid; **mp**: 263-265 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 770, 866, 1024, 1275, 1458, 1499, 1719, 1773, 2943; ¹**H NMR** (200 MHz, CDCl₃): δ 5.01 (d, *J* = 3.0 Hz, 1H), 5.11 (d, *J* = 2.9 Hz, 1H), 6.15 (s, 2H), 7.01 (s, 1H), 7.18 (s, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 90.1, 99.9,

102.8, 103.4, 119.7, 135.6, 150.5, 151.6, 153.9, 166.1; **Anal**. Calcd for C₁₀H₆O₄: C, 63.16; H, 3.18. Found: C, 63.14; H, 3.18 %.

(Z)-3-ethylidene-5,7-dimethoxyisobenzofuran-1(3H)-one (6s):

Yield; 94%; colorless solid; **mp**: 147-148 °C; **IR** (CHCl₃, cm⁻¹): v_{max} 668, 756, 1032, 1052, 1160, 1215, 1342, 1496, 1691, 1763, 3020; ¹**H NMR** (200 MHz, CDCl₃): δ 1.97 (d, *J* = 7.1 Hz, 3H), 3.90 (s, 3H), 3.95 (s, 3H), 5.56 (q, *J* = 7.1 Hz, 1H), 6.39 (d, *J* = 2.2 Hz, 1H), 6.57 (d, *J* = 2.2 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 11.2, 55.8, 55.8, 94.4, 99.5, 103.6, 105.7, 143.7, 146.2, 159.2, 164.6, 166.7; **Anal**. Calcd for C₁₂H₁₂O₄: C, 65.45; H, 5.49. Found: C, 65.41; H, 5.48 %.

(Z)-5,6,7-trimethoxy-3-pentylideneisobenzofuran-1(3H)-one (6t):

Yield: 91%; gum; **IR** (CHCl₃, cm⁻¹): v_{max} 660, 760, 1052, 1152, 1160, 1215, 1342, 1496, 1691, 1764, 3030; ¹**H-NMR** (200 MHz, CDCl₃): δ 0.89 (t, J = 6.6 Hz, 3H), 1.34-1.52 (m, 6H), 1.55-1.66 (m, 4H), 3.87 (s, 3H), 3.95 (s, 3H), 4.14 (3H), 5.21 (d, J = 5.2 Hz, 1H), 6.68 (s, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 14.5, 22.7, 25.8, 29.2, 31.8, 61.3, 62.2, 62.3, 81.7, 99.8, 111.4, 142.0, 145.2, 152.5, 156.7, 167.9; **Anal.** Calcd for C₁₇H₂₂O₅: C, 66.65; H, 7.24. Found: C, 66.50; H, 7.34 %.

6,8-dimethoxy-3-hydroxymethylisocoumarin (7):

Sodium borohydride powder (0.054 g, 1.43 mmol) was added to a stirred solution of isocoumarin ester **5d** (0.2 g, 0.718 mmol) in THF (3 ml) at 0 °C. The resulting suspension was stirred at 25 °C for 15 min. Methanol (3 ml) was then added drop wise, after 4 h the reaction mixture was quenched with 2N HCl (10 ml). The organic layer was separated and the aqueous phase extracted

with ethyl acetate. The combined organic phase was dried (Na_2SO_4) and concentrated to obtain a solid residue. Further purification was done with column chromatography [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (1:1) as eluent] to afford a pure product alcohol 7 as a colorless solid (0.147 g, yield: 87%, mp: 101-104 °C).

IR (CHCl₃, cm⁻¹): v_{max} 1074, 1272, 1559, 1575, 1602, 1685, 1704, 1730, 2820, 2924, 3460; ¹H NMR (200 MHz, CDCl₃): δ 3.90 (s, 3H), 3.97 (s, 3H), 4.42 (s, 2H), 6.35 (s, 1H), 6.36 (d, J = 2.2 Hz, 1H), 6.45 (d, J = 2.2 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 55.6, 56.3, 61.4, 98.8, 100.3, 102.8, 107.7, 108.9, 128.6, 132.7, 169.6, 170.2; Anal. Calcd for C₁₂H₁₂O₅: C, 61.01; H, 5.12. Found: C, 61.1; H, 5.14%.

Cytogenin (1):

A solution of boron tribromide (0.22 mL (1M in dichloromethane), 1.27 mmol) was slowly added with a syringe to a stirred solution of alcohol 7 (0.1 g, 0.423 mmol) in dichloromethane (4 mL) under nitrogen at -5 °C. After complete addition, the mixture was stirred for 1 h and then NaHCO₃ was added. The organic layer was separated and an aqueous layer extracted with ethyl acetate twice, combined organic layer was dried over anhydrous Na₂SO₄ and concentrated under vacuum. The crude product was purified using column chromatography [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (4:1) as eluent] to afford pure product **1** as a colorless solid (0.071 g, yield: 76%, mp: 150-152 °C).

IR (CHCl₃, cm⁻¹): υ_{max} 741, 1162, 1271, 1480, 1580, 1665, 1685, 2650, 3460; ¹H NMR (200 MHz, Acetone D₆): δ 3.92 (s, 3H), 4.40 (d, J = 5.6 Hz, 2H), 4.76 (t, J = 6.1 Hz, 1H), 6.49 (d, J = 2.2 Hz, 1H), 6.61 (d, J = 2.2 Hz, 1H), 6.66 (s, 1H), 11.11 (s, 1H); ¹³C NMR (50 MHz, Acetone D₆): δ 56.4, 61.1, 101.4, 102.6, 103.9, 110.0, 140.4, 158.4, 164.6, 166.8, 168.1; Anal. Calcd for C₁₁H₁₀O₅: C, 59.46; H, 4.54. Found: C, 59.45; H, 4.54%.

(E)-2-bromo-1,5-dimethoxy-3-(pent-1-en-1-yl)benzene (9):

OMe Br MeO

To a stirred solution of 5-(butane- 1-sulfonyl)-1-phenyl-1H-tetrazole **A** (1.4 g, 5.28 mmol) in dry THF (25 mL) at -78 °C under N₂ was added drop wise the NaHMDS (5.8 mL, 1.0 M in THF, 5.80 mmol). After stirring at -78 °C for 30 min, neat aldehyde **8** (2.05 g, 7.92 mmol) was added. After stirring for 3 h the reaction mixture was allowed to warm slowly at 25 °C and stirred overnight, where upon H₂O and Et₂O were added and the mixture shaken well. The organic layer was separated and dried over Na₂SO₄ to get crude product, which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (9:1) as eluent] to afford colorless oily product **9** (1.32 g, yield: 85%).

IR (CHCl₃ cm⁻¹): v_{max} 770, 912, 1012, 1108, 1276, 1339, 1486, 1505, 1604, 1615, 2990, 3040; ¹H-NMR (200 MHz, CDCl₃): δ 0.98 (t, J = 7.3 Hz, 3H), 1.49-1.57 (m, 2H), 2.23 (q, J = 7.0 Hz, 2H), 3.81 (s, 3H), 3.86 (s, 3H), 6.0-6.15 (m, 1H), 6.34 (d, J = 2.4 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 6.73 (d, J = 15.6 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 113.9, 22.4, 35.2, 55.4, 56.2, 98.5, 102.8, 129.5, 134.0, 139.4, 156.8, 159.5; Anal. Calcd for C₁₃H₁₇BrO₂: C, 54.75; H, 6.01. Found: C, 54.74; H, 6.10%.

(*E*)-2,4-dimethoxy-6-(pent-1-en-1-yl)benzonitrile (10):

Olefin 9 (1 g, 3.52 mmol) was dissolved in dry DMF (15 mL) and CuCN (1.10 g, 12.32 mmol) was added to it. The entire solution was refluxed under N₂ for 12 h (monitored by TLC); the reaction mixture was then cooled to room temperature and diluted with water (10 mL) and EtOAc (15 mL). The organic layer was separated and the aqueous layer was extracted with EtOAc (3×15 mL). The combined organic extracts were washed with brine and dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give a crude product which was purified by column chromatography [silica gel (230-400 mesh) and petroleum ether: Ethyl acetate (4:1) as eluent] to obtained colorless oily product **10** (0.68 g, yield: 84%).

IR (CHCl₃, cm⁻¹): v_{max} 748, 876, 932, 1032, 1098, 1276, 1339, 1486, 1505, 1604, 1615, 2220, 2989, 3054; ¹H NMR (200 MHz, CDCl₃): δ 0.91 (t, *J* = 7.3 Hz, 3H), 1.41-1.52 (m, 2H), 2.17 (q, *J* = 7.1 Hz, 2H), 3.79 (s, 3H), 3.82 (s, 3H), 6.22 (d, *J* = 2.2 Hz, 1H), 6.27-6.39 (m, 1H), 6.54 (d, *J* = 2.2 Hz, 1H), 6.64 (d, *J* = 15.8 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 17.8, 22.2, 35.2, 55.5, 56.0, 93.4, 96.8, 101.5, 115.8, 126.4, 136.6, 144.1, 163.1, 163.8; Anal. Calcd for C₁₄H₁₇NO₂: C, 72.70; H, 7.41. Found: C, 72.75; H, 7.40%.

3-(1-hydroxybutyl)-5,7-dimethoxyisobenzofuran-1(3H)-one (11):

To the stirred solution of aryl cyanide **10** (0.6 g, 2.59 mmol) in acetone (12 mL) and water (4 mL) catalytic OsO₄ (0.010 g, 1 mol%) was added at 25 °C followed by the addition of NMO (0.426 g, 3.63 mmol). The reaction mixture was stirred for 12 h at 25 °C and quenched with sat. sodium thiosulphate (5 mL), the organic layer was seperated and the aquous layer was extracted with ethyl acetate ($3 \times 10 \text{ mL}$). Both the layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure, obtained crude product was purified using column chromatography [silica gel (230-400 mesh) and petroleum ether: ethyl acetate (3:2) as eluent] to afford pure colorless solid **11** (0.620 g, yield: 90%, mp: 110-112 °C).

IR (CHCl₃, cm⁻¹): υ_{max} 695, 720, 754, 992, 1022, 1061, 1217, 1231, 1312, 1372, 1438, 1600, 1695, 1731, 2852, 2922, 2990, 3242; ¹H NMR (200 MHz, CDCl₃): δ 0.92 (t, *J* = 6.8 Hz, 3H), 1.37-1.43 (m, 2H), 1.53-1.63 (m, 2H), 3.05 (d, *J* = 3.4 Hz, 1H), 3.72 (d, *J* = 3.4 Hz, 1H), 3.87 (s, 1H), 3.91 (s, 1H), 4.82 (t, *J* = 4.6 Hz, 1H), 6.36 (d, *J* = 2.3 Hz, 1H), 6.69 (d, *J* = 2.3 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 14.0, 19.0, 35.3, 55.7, 56.1, 74.8, 75.2, 92.8, 97.7, 104.0, 115.3, 149.1, 163.1, 164.4; Anal. Calcd for C₁₄H₁₈O₅: C, 63.15; H, 6.81. Found: C, 63.17; H, 6.84%.

(Z)-3-butylidene-5-7-dimethoxyphthalide (12):

To a stirred solution of 3-substituted phthalide derivatives **11** (0.2 g, 0.751 mmol) in THF (10 mL) was added diethylazodicarboxylate (0.013 mL, 10 mol%) followed by the addition of PPh₃ (0.295 g, 1.5 mmol), tertiary butyl hydroperoxide (0.135 mL, 2 mmol) and allowed to stirred for 2 h at 25 °C. After the completion of reaction (as monitored by TLC), THF was distilled out to give crude product which was purified by chromatography [silica gel (230-400 mesh) and petrolium ether: ethyl acetate (7:3) as eluent] to afford viscous gum **12** (0.171 g, yield: 92%).

IR (CHCl₃, cm⁻¹): v_{max} 695, 720, 992, 1022, 1120, 1217, 1312, 1438, 1598, 1760, 1606; ¹H NMR (200 MHz, CDCl₃): δ 0.98-1.01 (t, J = 7.3 Hz, 3H), 1.45-1.66 (m, 2H), 1.90-2.03 (m, 2H), 3.90 (s, 3H), 3.94 (s, 3H), 5.52 (d, J = 5.6 Hz, 1H), 6.48 (d, J = 2.0 Hz, 1H), 6.63 (d, J = 2.0 Hz, 1H); ¹³C NMR (50 MHz, CDCl₃): δ 13.5, 18.0, 35.9, 55.0, 56.3, 84.2, 98.9, 102.5, 114.7, 125.3, 143.4, 150.1, 163.7, 165.1; 164.4; Anal. Calcd for C₁₄H₁₆O₄: C, 67.73; H, 6.50. Found: C, 67.77; H, 6.50%.

3. ¹H and ¹³C-NMR charts of new compounds:

¹H and ¹³C NMR Spectra of 5a

¹H and ¹³C NMR Spectra of 5d

¹H and ¹³C NMR Spectra of 5f

¹H and ¹³C NMR Spectra of 5g

¹H and ¹³C NMR Spectra of 5h

¹H and ¹³C NMR Spectra of 5i

¹H and ¹³C NMR Spectra of 5j

¹H and ¹³C NMR Spectra of 6k

¹H and ¹³C NMR Spectra of 6l

¹H and ¹³C NMR Spectra of 6m

¹H and ¹³C NMR Spectra of 6n

¹H and ¹³C NMR Spectra of 60

¹H and ¹³C NMR Spectra of 6p

¹H and ¹³C NMR Spectra of 6q

¹H and ¹³C NMR Spectra of 6r

There is a NOE correlation between Ha (δ 5.56, J = 7.1 Hz, q) and Hb (δ 6.57, J = 2.2 Hz, d). These results clearly revealed that the *Z*-stereochemistry of compound 6s is correct.

¹H and ¹³C NMR Spectra of 6s

MeO Hb Ha

There is a NOE correlation between Ha (δ 5.21, J = 5.2 Hz, d) and Hb (δ 6.68, s). These results clearly revealed that the *Z*-stereochemistry of compound 6t is correct.

¹H and ¹³C NMR Spectra of 7

¹H and ¹³C NMR Spectra of 1

¹H and ¹³C NMR Spectra of 9

¹H and ¹³C NMR Spectra of 11

