Electronic Supplementary Information

Synthesis of polypyrrole-titanium dioxide brush-like

nanocomposites with enhanced supercapacitive performance

Yan Gao,† Yanzhou Wang,† Xin Xu,* Kun Ding and Demei Yu*

Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, Xi'an 710049, China. †Yan Gao and Yanzhou Wang contributed equally to this work.

> *CORRESPONDING AUTHOR E-mail: (<u>xu.xin@stu.xjtu.edu.cn;</u> <u>dmyu@mail.xjtu.edu.cn</u>)

Fig.S1. SEM images of TiO₂ nanotube arrays under different anodization time. (a) 2 h, (b) 6 h, (c) 8 h, (d)10 h and (e) 12 h. (f) a diagram showing the relationship between tube length and anodization time.

Fig.S2. (a) Galvanostatic discharge curves of TiO_2 based PPy/TiO₂ composites with different anodization time at the current density of 15 A g⁻¹. (b) A diagram showing the relationship between tube length of the TiO_2 nanotube array and specific capacitance of the PPy/TiO₂ nanocomposite.

Fig.S3. Galvanostatic discharge curves of calcined and uncalcined TiO_2 based composites at the current density of 15 A g⁻¹.