Supporting Material

for

Reactions of β-Diketone Compounds with Nitriles Catalyzed by Lewis Acids: a simple approach to β-enaminone synthesis

Xu Cheng, ^a Shuchen Pei, ^a Chenchen Xue, ^a Kaifei Cao, ^b Li Hai ^a and Yong Wu*^a

^a Key Laboratory of Drug Targeting and Drug Delivery system of Education Ministry, Department of Medicinal Chemistry, West China School of Pharmacy, West China Hospital, Sichuan University, No. 37, GuoXue Road, Chengdu 610041, P.R. China. E-mail: <u>wyong@scu.edu.cn;</u> Fax: +862885503666

^b Clinical Medicine School, Chengdu university of Traditional Chinese Medicine, No. 37 12bridge road, Chengdu, 610075, P.R.China.

Experimental details and characterization data of synthesized

compounds, ¹H NMR and ¹³C NMR

Table of contents

1. General	S2
2. Characterization data of synthesized compounds	S2-S7
3. References	S7
4. ¹ H NMR and ¹³ C NMR spectra for synthesized compounds	S8-S33

General

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. All manipulations involving air-sensitive materials were performed under argon.

TLC was performed using precoated silica gel GF254 (0.2mm), while column chromatography was performed using silica gel (100-200 mesh). The melting point was measured on a YRT-3 melting point apparatus (Shantou Keyi instrument & Equipment Co. Ltd, Shantou, China). IR spectra were obtained on a Perkin Elmer983 (Perkin Elmer, Norwalk, CT, USA). 1H-NMR spectra were taken on a Varian INOVA400 (Varian, Palo Alto, CA, USA) using CDCl₃, as solvent. Chemical shifts are expressed in δ (ppm), with tetramethylsilane (TMS) functioning as the internal reference, and coupling constants (*J*) were expressed in Hz. Mass spectra were recorded on an Agilent 1946B ESI-MS instrument (Agilent, Palo Alto, CA, USA).

Characterization data

3-(amino(phenyl)methylene)pentane-2,4-dione (3a)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 10.94 (brs, 1H), 7.54-7.27 (m, 5H), 5.50 (brs, 1H), 2.29 (s, 3H), 1.64 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 197.60, 196.99, 168.19, 134.33, 128.65, 128.04, 127.83, 110.83, 29.74, 29.66. HRMS: m/z (+ESI) Calcd for C₁₂H₁₃NO₂, 204.1025, Found: 204.2306 [M+H]⁺.

3-(amino(4-nitrophenyl)methylene)pentane-2,4-dione (3b)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.94 (brs, 1H), 8.32 (d, 2H, *J* = 8.8 Hz), 7.74 (d, 2H, *J*= 8.8 Hz), 5.19 (brs, 1H), 2.46 (s, 3H), 2.20 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.90, 196.99, 166.18, 147.14, 140.04, 126.36, 123.04, 112.84, 29.97, 29.75. HRMS: m/z (+ESI) Calcd for C₁₂H₁₂N₂O₄, 249.0797, Found: 249.1906 [M+H]⁺.

3-(amino(2-nitrophenyl)methylene)pentane-2,4-dione (3c)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.87 (brs, 1H), 7.95-7.94 (m, 1H), 7.70-7.46 (m, 3H), 5.08 (brs, 1H), 2.20 (s, 3H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 199.30, 198.77, 167.19, 145.05, 134.74, 130.14, 128.87, 127.20, 123.80, 112.86, 29.74, 29.25. HRMS: m/z (+ESI) Calcd for C₁₂H₁₂N₂O₄, 249.0797, Found: 249.1906 [M+H]⁺

3-(1-amino-2-phenylethylidene)pentane-2,4-dione (3d)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 11.11 (brs, 1H), 7.40-7.18 (m, 5H), 5.64 (brs, 1H), 3.79 (s, 2H), 2.28 (s, 3H), 2.04 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.18, 197.30, 163.18, 135.63, 128.04, 127.85, 125.37, 110.80, 38.61, 32.04, 31.96. HRMS: m/z (+ESI) Calcd for C₁₃H₁₅NO₂, 218.1103, Found: 218.1082 [M+H]⁺

3-(1-amino-3-phenylallylidene)pentane-2,4-dione (3e)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 10.12 (brs, 2H), 7.48-7.32 (m, 5H), 7.10 (d, 1H, J = 16.4 Hz), 6.80 (d, 1H, J = 16.4 Hz), 2.34 (s, 3H), 2.14 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ

ppm): 197.92, 197.35, 169.26, 135.38, 135.02, 129.31, 128.72, 127.28, 124.32, 103.58, 30.19, 29.98. HRMS: m/z (+ESI) Calcd for C₁₄H₁₅NO₂, 230.1103, Found: 230.1783 [M+H]⁺.

3-(amino(furan-2-yl)methylene)pentane-2,4-dione (3f)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 10.46(brs, 2H), 7.56(s, 1H), 6.78 (s, 1H), 6.51 (s, 1H), 2.11 (s, 3H), 1.96 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.57, 198.46, 165.62, 155.32, 143.83, 124.13, 112.78, 111.60, 30.48, 30.33. HRMS: m/z (+ESI) Calcd for C₁₀H₁₁NO₃, 194.0739, Found: 194.1452 [M+H]⁺.

3-(amino(2-methoxyphenyl)methylene)pentane-2,4-dione (3g)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 10.17 (brs, 1H), 7.46-7.37 (m, 4H), 5.98 (brs, 1H), 3.87 (s, 3H), 2.12 (s, 3H), 1.26 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 197.30, 197.27, 169.18, 155.63, 130.65, 128.04, 127.13, 120.37, 110.80, 104.05, 59.50, 29.64, 29.25. HRMS: m/z (+ESI) Calcd for C₁₃H₁₅NO₃, 234.1052, Found: 234.2187 [M+H]⁺

3-(1-aminoethylidene)pentane-2,4-dione (3h)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.61 (brs, 2H), 2.29 (s, 6H), 2.20 (s, 3H); HRMS: m/z (+ESI) Calcd for C₇H₁₁NO₂, 142.0790, Found: 142.2203 [M+H]⁺. The observed data was consistent with that previously reported.^[1]

ethyl 4-acetyl-3-amino-5-oxohex-3-enoate (3i)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 15.11 (brs, 2H), 4.19 (q, 2H, *J* = 7.2 Hz), 3.22 (s, 2H), 2.24 (s, 3H), 2.07 (s, 3H), 1.27 (t, 3H, *J* = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.77, 197.97, 168.03, 163.19, 116.71, 61.43, 32.04, 31.97, 29.89, 14.32. HRMS: m/z (+ESI) Calcd for C₁₀H₁₅NO₄, 214.1001, Found: 214.1546 [M+H]⁺.

2-(amino(phenyl)methylene)-1-phenylbutane-1,3-dione (3j)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 15.61 (brs, 1H), 8.12-7.99 (m, 4H), 7.63-7.51 (m, 6H), 6.75 (brs, 1H), 2.20 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.63, 191.22, 166.50, 135.38, 133.58, 132.68, 132.35, 130.37, 129.40, 128.68, 128.65, 128.56, 128.19, 127.05, 109.65, 30.21. HRMS: m/z (+ESI) Calcd for C₁₇H₁₅NO₂, 266.1103, Found: 266.1912 [M+H]⁺.

3-(amino(2-chlorophenyl)methylene)pentane-2,4-dione (3m)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.61 (brs, 1H), 7.69-7.38 (m, 4H), 5.53 (brs, 1H), 3.29 (s, 3H), 2.11 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 196.98, 196.10, 167.18, 136.58, 136.56, 133.85, 129.88, 127.09, 115.82, 113.11, 29.75, 29.24. HRMS: m/z (+ESI) Calcd for C₁₂H₁₂NO₂Cl, 238.0557, Found: 238.1139 [M+H]⁺.

3-(1-amino-3-bromopropylidene)pentane-2,4-dione (3n)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 5.41 (brs, 2H), 3.53 (t, 2H, *J* = 6.4 Hz), 2.99 (t, 2H, *J* = 6.4 Hz), 2.27 (s, 3H), 2.01 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.70, 198.65, 167.71, 115.69, 38.50, 30.15, 29.98, 27.21. HRMS: m/z (+ESI) Calcd for C₈H₁₂NO₂Br, 234.0051, Found: 234.1671 [M+H]⁺.

3-(amino(4-hydroxyphenyl)methylene)pentane-2,4-dione (30)

Yellow oil; ¹H NMR (DMSO- d_6 , 400 MHz, δ ppm): 11.05 (brs, 1H), 10.64 (s, 1H), 7.59 (d, 2H, J = 8.8 Hz), 6.89 (d, 2H, J = 8.8 Hz), 5.40 (brs, 1H), 2.26 (s, 3H), 1.71 (s, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz, δ ppm): 199.01, 197.59, 167.28, 161.96, 134.52, 128.13, 116.74, 112.09, 29.97, 29.75. HRMS: m/z (+ESI) Calcd for C₁₂H₁₃NO₃, 220.0895, Found: 220.1901 [M+H]⁺.

3-(1-amino-2-(4-hydroxyphenyl)ethylidene)pentane-2,4-dione (3p)

Yellow oil; ¹H NMR (DMSO- d_6 , 400 MHz, δ ppm): 9.54 (s, 1H), 7.14 (d, 2H, J = 8.4 Hz), 6.79 (d, 2H, J = 8.4 Hz), 5.24 (brs, 2H), 3.85 (s, 2H), 2.29 (s, 3H), 2.11 (s, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz, δ ppm): 198.97, 198.76, 163.17, 155.51, 130.47, 128.19, 115.87, 112.01, 38.65, 29.10, 28.87. HRMS: m/z (+ESI) Calcd for C₁₃H₁₅NO₃, 234.1052, Found: 234.1787 [M+H]⁺.

methyl 4-(2-acetyl-1-amino-3-oxobut-1-en-1-yl)benzoate (3q)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 10.02 (brs, 1H), 8.20 (d, 2H, *J* = 5.6 Hz), 7.96 (d, 2H, *J* = 5.6 Hz), 5.52 (brs, 1H), 3.97 (s, 3H), 2.11 (s, 3H), 1.94 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.90, 196.99, 166.18, 165.97, 138.54, 129.85, 129.36, 126.34, 112.84, 51.51, 29.97, 29.75. HRMS: m/z (+ESI) Calcd for C₁₄H₁₅NO₄, 262.1001, Found: 262.1625 [M+H]⁺.

4-amino-4-phenylbut-3-en-2-one (4a)

White solid; m.p 84-86 °C (lit.^[2] 84-87 °C); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.93 (brs, 1H), 7.55-7.26 (m, 5H), 5.45 (s, 1H), 5.25 (brs, 1H), 2.15 (s, 3H); HRMS: m/z (+ESI) Calcd for C₁₀H₁₁NO, 162.0841, Found: 162.1431 [M+H]⁺.

4-amino-4-(4-nitrophenyl)but-3-en-2-one (4b)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm):9.83 (brs, 1H), 8.29 (d, 2H, J = 8.8 Hz), 7.72 (d, 2H, J = 8.8 Hz), 5.47 (s, 1H), 5.08 (brs, 1H), 2.20 (s, 3H); HRMS: m/z (+ESI) Calcd for C₁₀H₁₀N₂O₃, 207.0691, Found: 207.1983 [M+H]⁺.

The observed data was consistent with that previously reported.^[3]

4-amino-4-(2-nitrophenyl)but-3-en-2-one (4c)

Colorless oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.79 (brs, 1H), 7.96-7.94 (s 1H), 7.69-7.51 (m, 3H), 5.11 (s, 1H), 2.08 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 199.30, 155.88, 145.07, 134.75, 130.07, 128.88, 127.30, 123.85, 100.82, 29.22. HRMS: m/z (+ESI) Calcd for C₁₀H₁₀N₂O₃, 207.0691, Found: 207.1983 [M+H]⁺

4-amino-5-phenylpent-3-en-2-one (4d)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.70 (brs, 1H), 7.46-7.24 (m, 5H), 5.11 (s, 1H), 5.01 (brs, 1H), 3.46 (s, 2H), 2.09 (s, 3H); HRMS: m/z (+ESI) Calcd for C₁₁H₁₃NO, 176.0997, Found: 176.2143 [M+H]⁺

The observed data was consistent with that previously reported.^[4]

4-amino-6-phenylhexa-3,5-dien-2-one (4e)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.87 (brs, 2H), 7.51-7.47 (m, 5H), 7.04 (d, 1H, J = 16.4 Hz), 6.43 (d, 1H, J = 16.4 Hz), 5.32 (s, 1H), 2.17 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ

ppm): 197.94, 153.76, 135.43, 134.98, 129.31, 128.73, 127.28, 124.39, 103.20, 30.16. HRMS: m/z (+ESI) Calcd for $C_{12}H_{13}NO$, 188.0997, Found: 188.0464 [M+H]⁺

4-amino-4-(furan-2-yl)but-3-en-2-one (4f)

White solid; m.p 80-82 °C (lit.^[5] 80.0-80.5 °C); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.69 (brs, 1H), 7.49 (s, 1H), 6.82 (s, 1H), 6.47 (s, 1H), 5.80 (brs, 1H), 5.56 (s, 1H), 2.11 (s, 3H); HRMS: m/z (+ESI) Calcd for C₆H₉NO₂, 152.0633, Found: 152.1872 [M+H]⁺

4-amino-4-(2-methoxyphenyl)but-3-en-2-one (4g)

Colorless oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 11.08 (brs, 1H), 7.21-6.96 (m, 4H), 5.66 (brs, 1H), 5.35 (s, 1H), 3.86 (s, 3H), 1.30 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 190.31, 169.20, 155.64, 131.57, 128.04, 127.13, 120.38, 110.83, 104.05, 59.51, 29.63. HRMS: m/z (+ESI) Calcd for C₁₁H₁₃NO₂, 192.0946, Found: 192.2021 [M+H]⁺.

4-aminopent-3-en-2-one (4h)

White solid; m.p 30-32 °C (lit.^[6] 31-32 °C); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 8.59 (brs, 2H), 5.01 (s, 1H), 2.26 (s, 3H), 1.97 (s, 3H); HRMS: m/z (+ESI) Calcd for C₅H₉NO, 100.0684, Found: 100.1197 [M+H]⁺.

ethyl 3-amino-5-oxohex-3-enoate (4i)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 15.03 (brs, 2H), 5.60 (s, 1H), 4.20 (q, 2H, J = 7.2 Hz), 3.34 (s, 2H), 1.99 (s, 3H), 1.29 (t, 3H, J = 7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 196.90, 169.54, 167.54, 102.70, 59.85, 32.41, 30.35, 13.99. HRMS: m/z (+ESI) Calcd for C₈H₁₃NO₃, 172.0895, Found: 172.2547 [M+H]⁺.

3-amino-1,3-diphenylprop-2-en-1-one (4j / 4l)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 16.8 (brs, 1H), 8.00-7.98 (m, 4H), 7.57-7.47 (m, 6H), 6.86 (s, 1H), 6.83 (brs, 1H); HRMS: m/z (+ESI) Calcd for C₁₅H₁₃NO, 224.0997, Found: 224.3112 [M+H]⁺.

The observed data was consistent with that previously reported.^[7]

1-amino-4,4-dimethyl-1-phenylpent-1-en-3-one (4k)

White solid; m.p 73-75 °C (lit.^[7] 72-74 °C); ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.55-7.41 (m, 5H), 5.45 (s, 1H), 2.03 (brs, 2H), 1.27 (s, 9H); HRMS: m/z (+ESI) Calcd for C₁₃H₁₇NO, 204.1310, Found: 204.3212 [M+H]⁺.

4-amino-4-(2-chlorophenyl)but-3-en-2-one (4m)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.80 (brs, 1H), 7.68-7.37 (m, 4H), 5.70 (s, 1H), 5.53 (brs, 1H), 2.30 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 109.01, 167.17, 136.58, 136.57, 133.85, 129.89, 127.10, 116.73, 113.11, 29.25. HRMS: m/z (+ESI) Calcd for C₁₀H₁₀NOCl, 196.0451, Found: 196.1132 [M+H]⁺.

4-amino-6-bromohex-3-en-2-one (4n)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 5.42 (s, 1H), 5.31 (brs, 2H), 3.53 (t, 2H, *J* = 6.4

Hz), 2.99 (t, 2H, J = 6.4 Hz), 2.13 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.81, 167.70, 115.78, 38.41, 29.80, 27.30. HRMS: m/z (+ESI) Calcd for C₆H₁₀NOBr, 191.9946, Found: 192.0038 [M+H]⁺.

4-amino-4-(4-hydroxyphenyl)but-3-en-2-one (4o)

Yellow oil; ¹H NMR (DMSO- d_6 , 400 MHz, δ ppm): 11.06 (brs, 1H), 10.64 (s, 1H), 7.59 (d, 2H, J = 4.8 Hz), 6.89 (d, 2H, J = 4.8 Hz), 5.79 (s, 1H), 5.57 (brs, 1H), 2.27 (s, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz, δ ppm): 199.10, 167.27, 162.02, 134.53, 128.21, 116.75, 112.10, 28.75. HRMS: m/z (+ESI) Calcd for C₁₀H₁₁NO₂, 178.0790, Found: 178.0920 [M+H]⁺.

4-amino-5-(4-hydroxyphenyl)pent-3-en-2-one (4p)

Yellow oil; ¹H NMR (DMSO- d_6 , 400 MHz, δ ppm): 9.55 (s, 1H), 7.15 (d, 2H, J = 8.0 Hz), 6.79 (d, 2H, J = 8.0 Hz), 5.47 (s, 1H), 5.20 (brs, 2H), 3.85 (s, 2H), 2.12 (s, 3H). ¹³C NMR (DMSO- d_6 , 100 MHz, δ ppm): 198.87, 163.21, 155.51, 130.56, 127.98, 116.01, 112.07, 38.70, 29.07. HRMS: m/z (+ESI) Calcd for C₁₁H₁₃NO₂, 192.0946, Found: 192.1405 [M+H]⁺.

methyl 4-(1-amino-3-oxobut-1-en-1-yl)benzoate (4q)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 10.03 (s, 1H), 8.20 (d, 2H, *J* = 5.6 Hz), 7.96 (d, 2H, *J* = 5.6 Hz), 5.71 (s, 1H), 5.50 (brs, 1H), 3.97 (s, 3H), 2.11 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 198.91, 166.20, 165.98, 138.54, 129.85, 129.36, 126.34, 112.85, 51.53, 29.76. HRMS: m/z (+ESI) Calcd for C₁₂H₁₃NO₃, 219.0895, Found: 219.1136 [M+H]⁺.

2-(amino(phenyl)methylene)cyclohexane-1,3-dione (3r)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.67 (brs, 2H), 7.96-7.94 (m, 2H), 7.47-7.39 (m, 3H), 2.55 (t, 2H, J = 6.4 Hz), 2.44 (t, 2H, J = 6.4 Hz), 2.07-2.03 (m, 2H); HRMS: m/z (+ESI) Calcd for C₁₃H₁₃NO₂, 216.0946, Found: 216.2211 [M+H]⁺.

The observed data was consistent with that previously reported.^[8]

7-amino-5-oxo-7-phenylhept-6-enoic acid (4r)

Yellow oil; ¹H NMR (CDCl₃, 400 MHz, δ ppm): 11.11 (s, 1H), 9.58 (brs, 2H), 7.41-7.30 (m, 5H), 5.35 (s, 1H), 2.40 (t, 2H, J = 6.4 Hz), 2.35 (t, 2H, J = 6.4 Hz), 2.01-1.95 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 201.29, 178.43, 160.71, 139.75, 128.31, 127.96, 126.97, 100.73, 42.35, 32.71, 18.29. HRMS: m/z (+ESI) Calcd for C₁₃H₁₅NO₃, 234.1052, Found: 234.2136 [M+H]⁺.

Synthesis of (5-methylisoxazol-3-yl)methanamine (23)

2-(1,3-dioxoisoindolin-2-yl)acetonitrile (20)

To a stirring solution of glycinonitrile hydrochloride **19** (2g, 21.6mmol, 1.0eq) in chloroform (20ml) at 0 °C was added triethylamine (2.19g, 21.6mmol, 1.0eq) dropwise. The reaction mixture was allowed to attain room temperature for 30min and phthalic anhydride (3.2g, 21.6mmol, 1.0eq) was added. The reaction mixture was heat at 60 °C for a period of 6h. After cooling, the organic layer was washed with water and brine and dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was recrystallized from petroleum ether and ethyl acetate, to afford the pure white solid **20** (2.4g, 60%). M.p. 126-127°C. ¹H NMR (CDCl₃, 400 MHz, δ ppm): 7.95-

7.94 (m, 2H), 7.83-7.80 (m, 2H), 4.59 (s, 2H). The observed data was consistent with that previously reported.^[9]

2-(2-amino-4-oxopent-2-en-1-yl)isoindoline-1,3-dione (21)

To a solution of **20** (500mg, 2.7mmol, 1.0eq), AlCl₃ (360mg, 2.7mmol, 1.0eq) and acetylacetone (323mg, 3.2mmol, 1.2eq) were added at room temperature with stirring. The mixture was heated at 100°C with stirring for 4 h. Afer cooling to room temperature, saturated sodium carbonate solution was added, and the mixture was extracted with EtOAc. The combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to give **21** (495mg, 75.1%) as a white solid. M.p 150-152 °C. ¹H NMR (CDCl₃, 400 MHz, δ ppm): 14.63 (brs, 2H), 7.91-7.88 (m, 2H), 7.77-7.75 (m, 2H), 5.57 (s, 1H), 4.51 (s, 2H), 2.05 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz, δ ppm):196.38, 169.52, 167.75, 160.02, 132.25, 132.23, 132.21, 132.19, 123.74, 123.68, 98.83, 55.42, 27.53. HRMS: m/z (+ESI) Calcd for C₁₃H₁₂N₂O₃, 245.0848, Found: 245.1354 [M+H]⁺

2-((5-methylisoxazol-3-yl)methyl)isoindoline-1,3-dione (22)

To a stirring solution of **21** (200mg, 0.82mmol, 1.0eq) in ethanol (10ml) was added hydroxylamine hydrochloride (69mg, 0.99mmol, 1.2eq). The mixture reaction was heated at 80°C with stirring for 2 h. Ethanol was removed under vacuo and the residue was extracted with ethyl acetate, the combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The crude product was used for the next reaction without any further purification.

(5-methylisoxazol-3-yl)methanamine (23)

To a stirring solution of **22** (150mg, 0.62mmol, 1.0eq) in ethanol (5ml) was added 80% hydrazine hydrate (78mg, 1.2mmol, 2.0eq). The mixture reaction was heated at 80°C with stirring for 2 h. Ethanol was removed under vacuo and the residue was extracted with ethyl acetate, the combined organic phases were washed with brine, dried over Na₂SO₄, and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel to give **23** (53mg, 76.8%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz, δ ppm): 9.15 (brs, 2H), 6.33 (s, 1H), 3.83 (s, 2H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz, δ ppm): 169.36, 150.02, 102.32, 38.64, 11.85. HRMS: m/z (+ESI) Calcd for C₅H₈N₂O, 113.1298, Found: 113.2349 [M+H]⁺

References

- 1. D. T. W. Chu, S. N. Huckin, Can. J. Chem., 1980, 58, 138-142.
- 2. S. Petr, B. Valerio, P. Marketa, M. Vladimir, L. Antonin, Org. Biomol. Chem., 2005, 3, 1217-1226.
- 3. A. Angel, B. L. Calvo, G. O. Alfonso, S. M. Luisa, S. M. Carmen, Heterocycles., 2001, 55, 331-351.
- 4. A. I. Gurevich, M. N. Kolosov, V. N. Omel'chenko, V. V. Onoprienko, *Bioorg. Khim.*, 1975, 2, 176-181.
- 5. H. Tsunetoshi, T. Yukio, Heterocycles., 1977, 12, 1985-1991.
- 6. L. Mladen, F. Mirela, P. Ivan, C. Ivica, Green Chem., 2005, 11, 771-774.
- 7. S. Kovacs, Z. Novak, Tetrahedron., 2013, 69, 8987-8993.
- 8. A. A. Akhrem, F. A. Lakhvich, V. A. Khripach, A. G. Pozdeev, Dokl. Akad. Nauk., 1976, 11, 1007-1009.
- 9. Mays, Jared R.; Hill, Stephanie A.; Moyers, Justin T.; Blagg, Brian S. J. Bioorg Med Chem 2010, 18, 249-266.

¹H NMR and ¹³C NMR spectra for synthesized compounds

¹H NMR spectra for compound **3b**

8

1gh-01 H1 CDC13 Pulse Sequence: s2pul 7.332 7.332 7.332 7.315 7.315 7.315 7.215 7.215 7.273 7.273 7.273 5.644 3.792 2.287 111.111 0 n $^{|}_{\rm NH_2}$ 3d 3 ppm 11 0.87 6 4 2 3.123.04 10 9 8 5 i 7 2.67 0.66 2.00

¹H NMR spectra for compound 3d

 $^1\mathrm{H}$ NMR spectra for compound $\mathbf{3f}$

¹H NMR spectra for compound 3m

 ^{1}H NMR spectra for compound **30**

CX-41 H1 DMSO Pulse Sequence: s2pul

¹H NMR spectra for compound 3q

¹H NMR spectra for compound **4b**

¹H NMR spectra for compound 4d

 $^1\mathrm{H}$ NMR spectra for compound $\mathbf{4f}$

 $^1\mathrm{H}$ NMR spectra for compound 4k

CX-12 H1 CDC13 Pulse Sequence: s2pul

¹H NMR spectra for compound **4n**

CX-32 H1 DMS0 Pulse Sequence: s2pul

¹H NMR spectra for compound **40**

¹H NMR spectra for compound **4p**

¹H NMR spectra for compound 3r

¹³C NMR spectra for compound **3a**

 ^{13}C NMR spectra for compound 3c

¹³C NMR spectra for compound **3e**

 ^{13}C NMR spectra for compound 3g

¹³C NMR spectra for compound **3m**

¹³C NMR spectra for compound **3**q

 ^{13}C NMR spectra for compound $\mathbf{4g}$

¹³C NMR spectra for compound **4m**

¹³C NMR spectra for compound 4q

¹H NMR spectra for compound **22**

¹³C NMR spectra for compound **23**