Supplementary Information

Highly portable fluorescent turn-on sensor for Sulfide Anions

based on Silicon nanowires

Huimin Wang,^{a,b} Lixuan Mu,^a Liangliang Jin,^{a,b} Guangwei She,^a Haitao Xu^a and Wensheng Shi ^{*a}

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China Tel: +86-10-82543513, Fax: +86-10-82543513, Email:shiws@mail.ipc.ac.cn ^bUniversity of Chinese Academy of Sciences, Beijing 100190, China

|--|

Sample	Mass loss (%)	M (organic. residues)
		[g mol ⁻¹]
SiNWs	2.4	-
4-A-SiNWs	36.8	415.21

Fig. S1 Relative fluorescence intensity of 4-A-SiNWs (50µg/mL) in the presence of 10µM various metal ions. HEPES buffer (pH=7.0). λ_{ex} =430nm, λ_{em} =545nm. 1-14 is

successively for blank, Cu²⁺, Ca²⁺, Cd²⁺, Mg²⁺, Al³⁺, Co²⁺, Na⁺, Hg²⁺, Mn²⁺, K⁺, Ni²⁺, Pb²⁺, Zn²⁺.

Fig. S2 Fluorescence images of the SiNW arrays based sensor before a) and b) after being treated with H_2S gas for 1 minute. The sensor prewetted with water was placed in a conical flask, then the H_2S gas produced by ferrous sulfide and dilute sulphuric acid was introduced into the system.