Supporting Information

Valeriadimers A-C, three sesquiterpenoid dimers

from Valeriana officinalis var. latifolia†

Zhu-zhen Han, [‡]*a,b* Ji-Ye, [‡]*a* Qing-Xin Liu, *a* Yun-heng Shen, *a* Rong-Cai Yue, *a* Hui-Liang Li**a* and Wei-Dong Zhang**a,b,c*

Shanghai 201203, P. R. China

^a Department of Phytochemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433.P. R. China. Fax: +86 (0)21 81871244; Tel: +86 (0)21 81871244; E-mail: faranli@hotmail.com, wdzhangy@hotmail.com.

^b Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,

^c Shanghai Jiao Tong University, Shanghai 200030, P. R. China

[†] Electronic Supplementary Information (ESI) available: The extraction scheme, compound characterization, spectroscopic data, and CIF files of **1** and **3** are included herein. See DOI: 10.1039/b000000x/

[‡] Zhu-zhen Han and Ji Ye contributed equally to this work.

Contents

Experimental section

Table S1¹H NMR and ¹³C NMR Data of 1 Table S2 ¹H NMR and ¹³C NMR Data of 2 Table S3 ¹H NMR and ¹³C NMR Data of 3 Table S4 Cell viability of 1, 2, and 3 Figure S1 the structure of Valeriadimer A (1), Valeriadimer B (2), and Valeriadimer C (3) Figure S2 HRESIMS spectrum of 1 Figure S3 IR spectrum of 1 Figure S4 500 MHz¹H NMR spectrum of 1 in CDCl₃ Figure S5 125 MHz ¹³C NMR spectrum of 1 in CDCl₃ Figure S6 125 MHz DEPT NMR spectrum of 1 in CDCl₃ Figure S7 500 MHz HSQC NMR spectrum of 1 in CDCl₃ Figure S8 500 MHz¹H-¹H COSY NMR spectrum of 1 in CDCl₃ Figure S9 500 MHz HMBC NMR spectrum of 1 in CDCl₃ Figure S10 500 MHz NOESY NMR spectrum of 1 in CDCl₃ Figure S11 Single X-ray crystal structure and Packing diagram of 1 Figure S12 HRESIMS spectrum of 2 Figure S13 IR spectrum of 2 Figure S14 500 MHz¹H NMR spectrum of 2 in CDCl₃ Figure S15 125 MHz ¹³C NMR spectrum of 2 in CDCl₃ Figure S16 125 MHz DEPT NMR spectrum of 2 in CDCl₃ Figure S17 500 MHz HSQC NMR spectrum of 2 in CDCl₃ Figure S18 500 MHz ¹H-¹H COSY NMR spectrum of 2 in CDCl₃ Figure S19 500 MHz HMBC NMR spectrum of 2 in CDCl₃ Figure S20 500 MHz NOESY NMR spectrum of 2 in CDCl₃ Figure S21 HRESIMS spectrum of 3 Figure S22 IR spectrum of 3 Figure S23 500 MHz ¹H NMR spectrum of 3 in CD₃OD Figure S24 125 MHz ¹³C NMR spectrum of 3 in CD₃OD Figure S25 125 MHz DEPT NMR spectrum of 3 in CD₃OD Figure S26 500 MHz HSQC NMR spectrum of 3 in CD₃OD **Figure S27** 500 MHz 1 H- 1 H COSY NMR spectrum of **3** in CD₃OD Figure S28 500 MHz HMBC NMR spectrum of 3 in CD₃OD Figure S29 500 MHz NOESY NMR spectrum of 3 in CD₃OD Figure S30 Single X-ray crystal structure and Packing diagram of 3 **Crystallographic data of Valeriadimer A** (1) Crystallographic data of Valeriadimer C (3)

Experimental section

General Experimental Procedures.

General. Optical rotations were obtained with a Perkin-Elmer 341 polarimer. IR spectra were recorded with a Bruker FTIR Vector 22 spectrometer. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance-500 spectrometer (**1**, **2** in CDCl₃ and **3** in CD₃OD. HRESIMS were measured on an Agilent LC/MSD Trap XCT mass spectrometer. Materials for column chromatography were silica gel (200-300 mesh; Huiyou Silica Gel Development Co., Ltd.), Sephadex LH-20 (40-70 μ m; Pharmacia Co., Ltd.), and YMC-Gel ODS-A (50 μ m; YMC, Milford, MA). Preparative TLC (0.4-0.5 mm, 20×20 cm) was conducted with glass precoated silica gel GF₂₅₄ (Huiyou Silica Gel Development Co., Ltd.). Spots were visualized under UV light (254 nm) or by spraying with 10% H₂SO₄ in 95% EtOH followed by heating. The cell lines (HUVECs) used for the assay were purchased from the Shanghai institute of pharmaceutical industry. MTT was purchased from Sigma Chemical Co. and dimethyl sulfoxide (DMSO) from Merck, Sharp & Dohme, Ltd.

Plant Material. The roots of *Valeriana officinalis* var. *latifolia* were collected from Gaopo, Guizhou province in China in July 2007 and authenticated by Prof. Han-min Zhang, Second Military Medical University. A herbarium specimen (NO. 2007-08-18) was deposited in the School of Pharmacy, Second Military Medical University, Shanghai, China.

Extraction and Isolation: The dried root powder of *Valeriana officinalis* var. *latifolia* (9.8kg) were extracted with 50 L of 95% ethanol at room temperature (3×24 h). The EtOH solution was filtered and concentrated under reduced pressure to yield crude extract, which was suspended in H₂O (2.5 L) and partitioned successively with CHCl₃ (5×2.5 L) and EtOAc (2×2.5 L), respectively. The CHCl₃ extract (307 g) was subjected to silica gel column chromatography, eluted with a step gradient of petroleum ether-acetone (from 100: 0 to 0:100), to afford 15 fractions (1-15). Fr.5 (9.0 g) was submitted a ODS CC(CH₃OH-H₂O , 40-100%) , and purified by preparative TLC (CHCl₃- EtOAc, 10:1) to yield **1** (16.1 mg) and **2** (28.2 mg). Fr.9 (1.2 g) was purified by silica gel column chromatography (CHCl₃- Me₂CO , 4:1) to yield **3** (20.7 mg).

Valeriadimer A (1) Orthorhombic crystal; $[\alpha]_{D}^{25}$ +2.36 (c 0.12, CH₃OH); IR (KBr) v_{max} 2942,

2920, 1711, 1456, 1381cm⁻¹; ¹H NMR and ¹³C NMR data see **Table S1**; ESI-MS m/z: 411 [M+H]⁺, 433 [M+Na]⁺, 445 [M+Cl]⁻; HRESIMS m/z: 433.3113 [M+Na]⁺ (calcd. for C₂₈H₄₂O₂, 433.3083).

Valeriadimer B (2) colorless oil; $[\alpha]_{D}^{25}$ +41.7 (c 0.20, CH₃OH); IR (KBr) v_{max} 2924, 2866, 1705, 1628,1452, 1382, 1300, 1259, 1176cm⁻¹; ¹H NMR and ¹³C NMR data see **Table S2**; ESI-MS *m/z*: 455 [M+H]⁺, 477 [M+Na]⁺, 489 [M+Cl]⁻; HRESIMS *m/z*: 455.3154 [M+H]⁺ (calcd. for C₂₉H₄₂O₄, 455.3156).

Valeriadimer C (**3**) Orthorhombic crystal; α]_D²⁵ -30.0 (c 0.35, CH₃OH); IR (KBr) ν_{max} 3573, 3512, 3354, 2978, 2927, 1460, 1379, 1147, 1084 cm⁻¹; ¹H NMR and ¹³C NMR data see **Table S3**; ESI-MS *m/z*: 505 [M+H]⁺, 527 [M+Na]⁺, 503 [M-H]⁻; HRESIMS *m/z*: 527.3458 [M+H]⁺ (calcd. for C₃₀H₄₈O₆, 527.3451).

Cell Viability Assays.

HUVECs ($4 \times 10^4 \sim 6 \times 10^4$ cells/well) were seeded into 96-well plates in RPMI 1640 containing 10% FBS. After attachment, the medium was replaced with RPMI 1640 containing 3% FBS. Cells were treated with **1**, **2**, and **3** for 48 h, respectively. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide, which is converted to formazan in surviving cells. The formazan was dissolved in 10% SDS–5% iso-butanol–0.01 M HCl. Optical density was measured (three times) at 570 nm with 630 nm as the reference and cell viability was normalized as the percentage of control.¹

References and Notes

1 K. K. Shen, L. L. Ji, C. Y. Gong, Y. B. Ma, L. Yang, Y. Fan, M. Q. Hou, Z. T. Wang, *Biochem*. *Pharmacol*, 2012, **84**, 784 – 792.

Table S1. ¹H NMR and ¹³C NMR Data of $\mathbf{1}$ (δ in ppm, J in Hz)

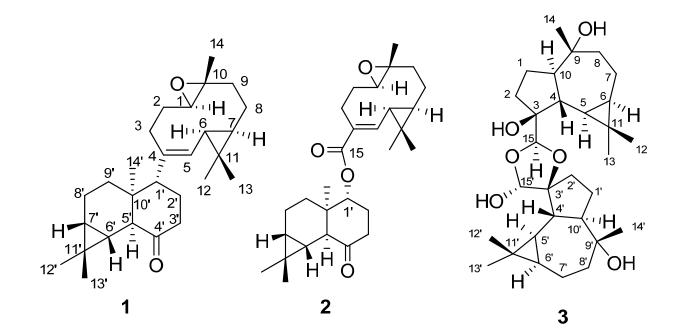
				1	
No	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	No	$\delta_{ m H}$ mult. (J in Hz)	$\delta_{ m C}$
1	3.09 (dd, 11.0 ,2.0)	64.7 d	1′	2.64 (dd, 13.0, 4.0)	42.4 d
2a	2.13 (m)	28.7 t	2'a	2.00 (m)	29.1 t
2b	1.37 (overlap)		2′b	1.86 (m)	
3a	2.75 (m)	31.4 t	3′a	2.83 (dt, 7.5, 14.0)	39.0 t
3b	2.17 (m)		3′b	2.27(m)	
4		142.2 s	4′		215.7 s
5	5.03 (d, 8.3)	126.2 d	5'	1.78 (dd, 5.0, 1.5)	55.7 d
6	1.37 (overlap)	28.7 d	6'	0.52 (dd, 9.0, 5.0)	23.6 d
7	0.59,(dt, 1.5, 10.0)	35.3 d	7′	0.80 (t, 9.0)	18.6 d
8a	1.80 (m)	22.4 t	8'a	2.05 (m)	17.1 t
8b	0.95(overlap)		8′b	1.60 (dd, 16.0, 8.0)	
9a	2.12 (m)	41.1 t	9′a	1.34 (m)	33.5 t
9b	1.07 (overlap)		9′b	0.69 (m)	
10		61.9 s	10′		39.3 s
11		21.3 s	11′		19.5 s
12	1.08 (s)	30.0 q	12′	0.95 (s)	16.3 q
13	1.01 (s)	16.6 q	13′	1.03 (s)	29.9 q
14	1.12 (s)	19.4 q	14′	0.73 (s)	23.6 q

Data of **1** was recorded at 500 MHz and ¹³C NMR spectroscopic at 125 MHz

			2	,	
Ν	$\delta_{\rm H}$ mult. (<i>J</i> in Hz)	$\delta_{ m C}$	No	$\delta_{ m H}$ mult. (J in Hz)	$\delta_{ m C}$
1	2.99 (dd, 11.5 ,3.5)	63.8 d	1′	5.48 (dd, 11.5, 5.0)	71.2 d
2a	2.27 (m)	28.7 t	2′a	2.16 (overlap)	26.9 t
2b	1.37 (m)		2′b	1.83 (overlap)	
3a	2.72 (dt, 14.0, 3.5)	24.1 t	3'a	2.92 (dt, 7.0, 14.5)	36.8 t
3b	2.17 (m)		3′b	2.33(m)	
4		133.1 s	4′		213.4 s
5	6.88 (d, 9.5)	144.4 d	5'	1.94 (dd, 4.5, 2.0)	54.3 d
6	1.48 (overlap)	29.5 d	6′	0.48 (dd, 8.5, 4.5)	22.9 d
7	0.94,(overlap)	38.2 d	7′	0.80 (overlap)	19.6 d
8a	1.88 (m)	23.0 t	8′a	1.81 (overlap)	16.2 t
8b	1.10 (overlap)		8′b	1.55 (dd, 15.0, 6.5)	
9a	2.17 (overlap)	41.1 t	9′a	1.46 (m)	31.9 t
9b	1.10 (overlap)		9′b	0.76 (m)	
10		61.4 s	10′		38.0 s
11		23.9 s	11′		19.7 s
12	1.14 (s)	29.3 q	12′	0.97 (s)	16.2 q
13	1.19 (s)	16.4 q	13'	1.00 (s)	30.2 q
14	0.99 (s)	18.2 q	14′	0.92 (s)	22.1 q
15		167.7 s			

Table S2. ¹H NMR and ¹³C NMR Data of **2** (δ in ppm, J in Hz)

Data of $\mathbf{2}$ were recorded in CDCl₃ at 500 MHz for ¹H and 125 MHz for ¹³C NMR


Table S3. ¹ H NMR and ¹³ C NMR Data of 3 (δ in ppm, <i>J</i> in Hz)						
			3			
Ν	$\delta_{\rm H}$ mult. (J in Hz)	$\delta_{ m C}$	No	δ_{H} mult. (J in Hz)	$\delta_{ m C}$	
1a	1.94 (m)	25.2 t	1′a	1.80 (m)	26.2 t	
1b	1.72 (overlap)		1 <i>′</i> b	1.62 (overlap)		
2a	1.72 (overlap)	35.3 t	2′a	1.77 (m)	30.2 t	
2b	1.62 (m)		2′b	1.65 (overlap)		
3		83.1 s	3'		94.0 s	
4	1.27 (t, 10.5)	47.9 d	4′	1.52 (overlap)	46.0 d	
5	0.70 (m)	29.5 d	5'	0.53 (m)	31.4 d	
6	0.56 (m)	27.4 s	6′	0.67 (m)	27.5 s	
7a	1.77 (overlap)	20.6 t	7′a	1.77 (overlap)	20.5 t	
7b	0.94 (overlap)		7′b	0.94 (overlap)		
8a	1.72 (overlap)	45.1 t	8′a	1.72 (overlap)	45.0 t	
8b	1.53 (overlap)		8′b	1.53 (overlap)		
9		75.1 s	9′		74.8 s	
10	1.94 (m)	59.3 d	10′	1.81 (m)	59.1 d	
11		20.5 s	11′		20.7 s	
12	1.06 (s)	16.3 q	12′	1.05 (s)	16.4 q	
13	1.03 (s)	28.7 q	13'	1.04 (s)	28.4 q	
14	1.13 (s)	19.7 q	14′	1.14 (s)	20.2 q	
15	5.12 (s)	103.0 d	15'	5.40 (s)	98.2 d	

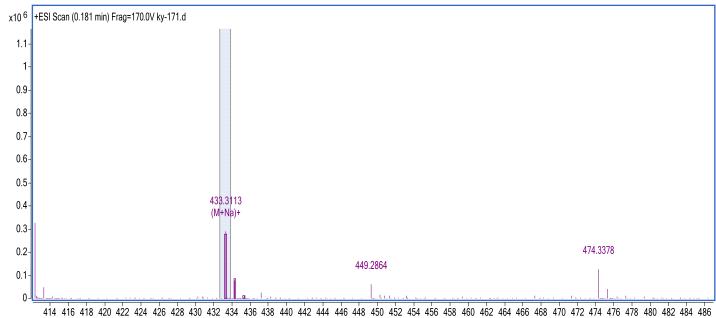

Data of **3** were recorded in CD₃OD at 500 MHz for 1 H and 125 MHz for 13 C NMR

Table S4. Cell viability of 1, 2, and 3 (Mean \pm SD, n=3)								
	1	2	3	VEGF ^a	DMSO			
concentration	20 µM	20 µM	20 µM	10 ng/mL				
viability	146.8±3.3%	140.7±4.7%	97.7±3.4%	149.5±1.4%	100%			

^a positive control

Figure S1 The chemical structures of 1-3

Figure S2 HRESIMS spectrum of 1

Counts vs. Mass-to-Charge (m/z)

m/	m/z Ion				Form	ula	Abundance		
433.3	113	(M+Na)+	C28 H42 Na O2			290709			
Best	Formula (M)	Ion Formula	Ion Formula Calo		Score	Cross Score	Mass	Calc Mass	
TRUE	C28 H42 O2	C28 H42 Na O2	433	.3083	85.6		410.3221	410.3185	

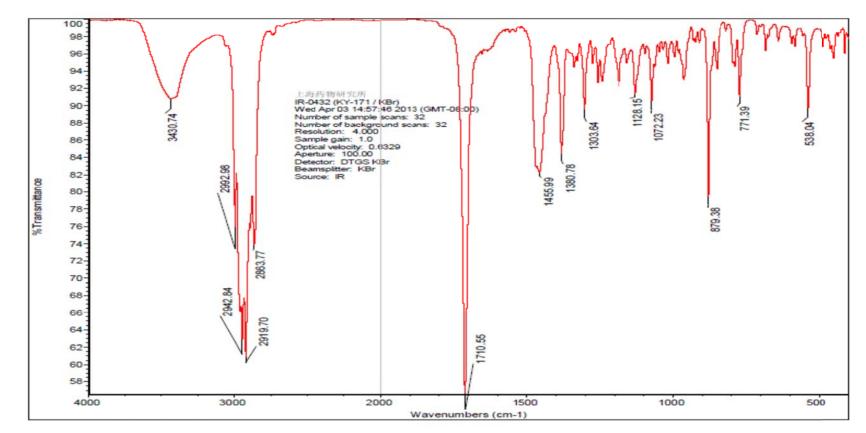
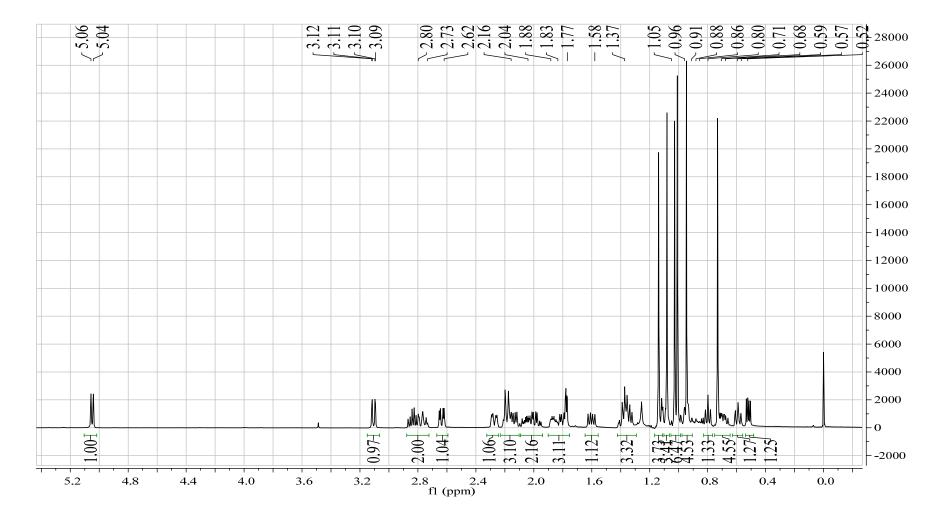
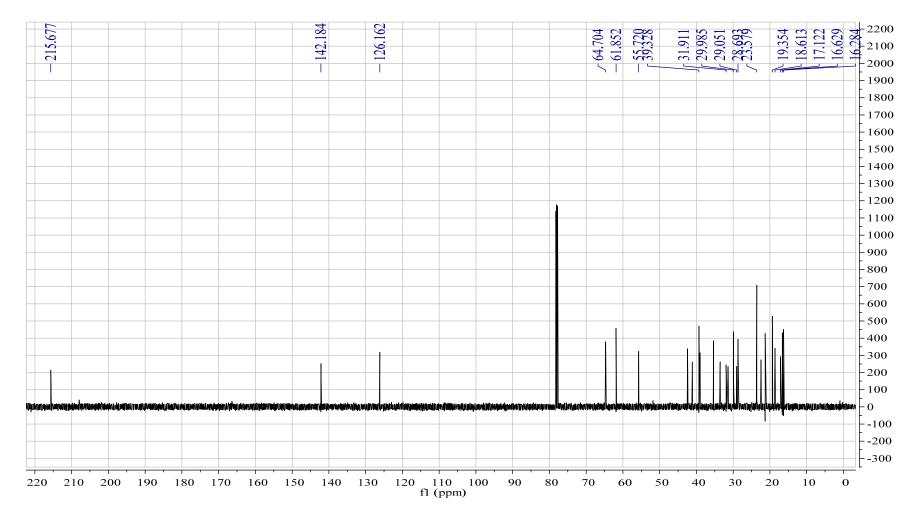
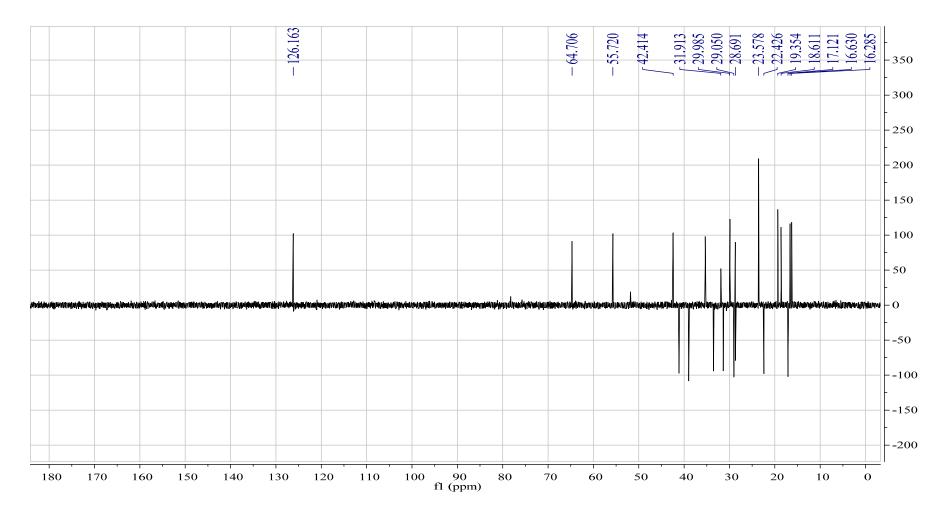
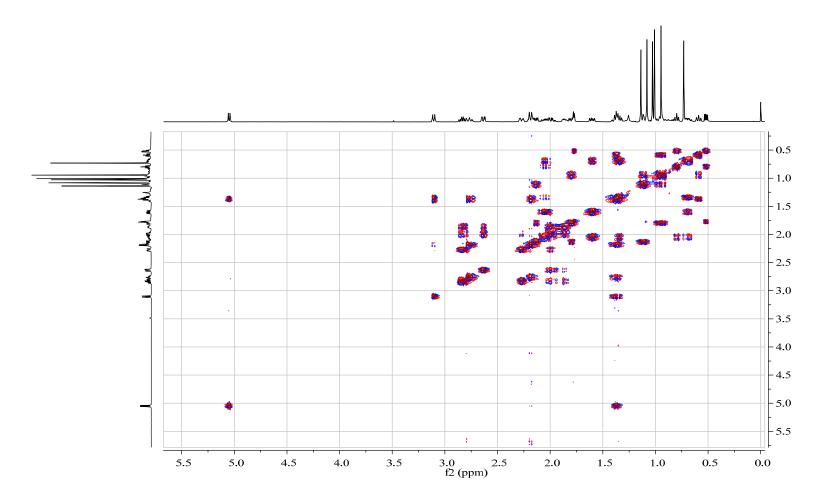
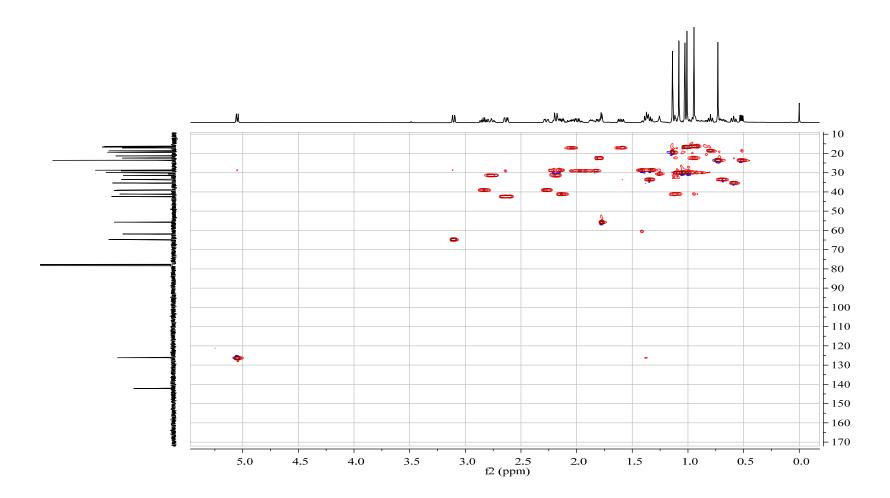
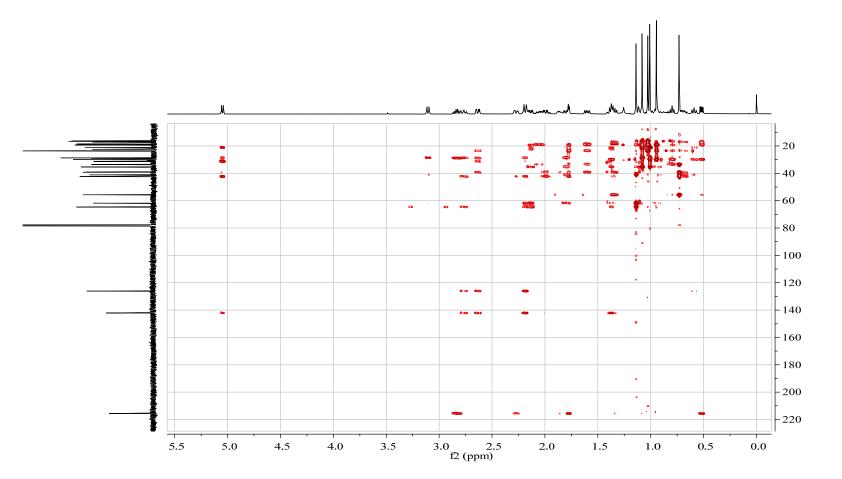



Figure S3 IR spectrum of 1

Figure S4 500 MHz ¹H NMR spectrum of **1** in CDCl₃


Figure S6 125 MHz DEPT NMR spectrum of 1 in CDCl₃


Figure S7 500 MHz 1 H- 1 H COSY NMR spectrum of **1** in CDCl₃

fl (ppm)

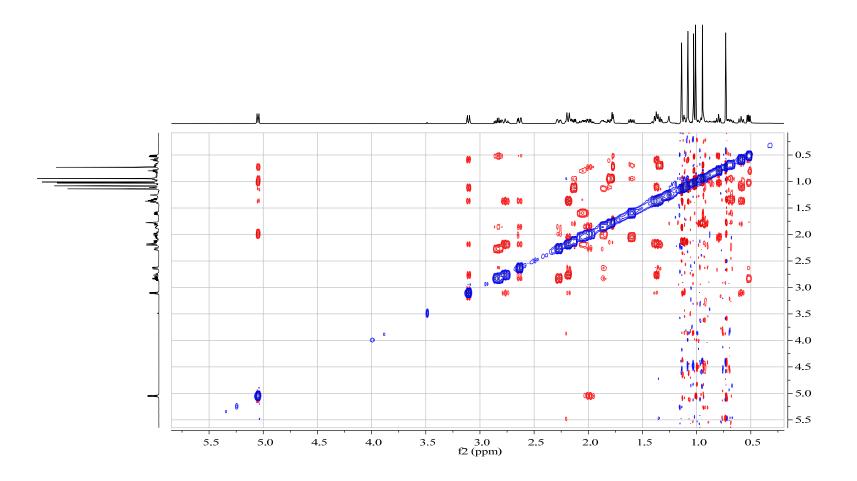
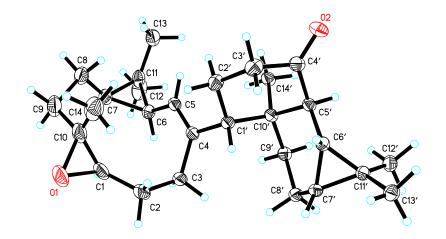

Figure S8 500 MHz HSQC NMR spectrum of **1** in CDCl₃

Figure S9 500 MHz HMBC NMR spectrum of **1** in CDCl₃


fl (ppm)

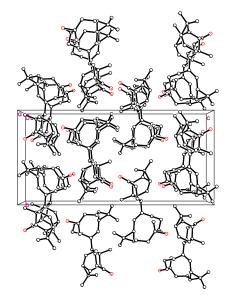


Figure S10 500 MHz NOESY NMR spectrum of **1** in CDCl₃

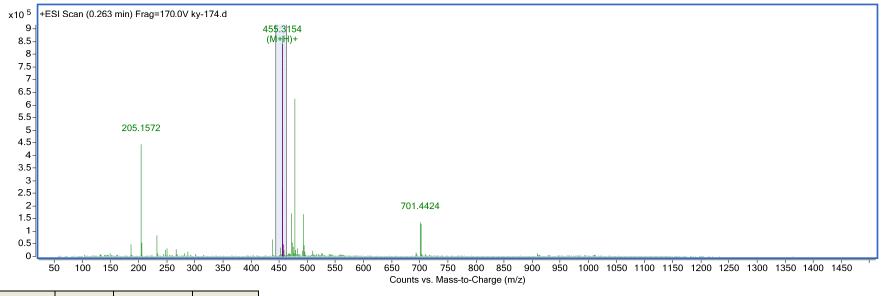

fl (ppm)

Figure S11 Single X-ray crystal structure and Packing diagram of ${\bf 1}$

Figure S12 HRESIMS spectrum of 2

m/z	Ion	Ion Formula	
455.3154	(M+H)+	C29 H43 O4	873452.3

Best	Formula (M)	Ion Formula	Calc m/z	Score	Cross Score	Mass	Calc Mass	Diff (ppm)	Abs Diff (ppm)	Abund Match	Spacing Match	Mass Match	m/z
TRUE	C29 H42 O4	C29 H43 O4	455.3156	97.39		454.3081	454.3083	0.5	0.5	91.6	99.63	99.75	455.3154

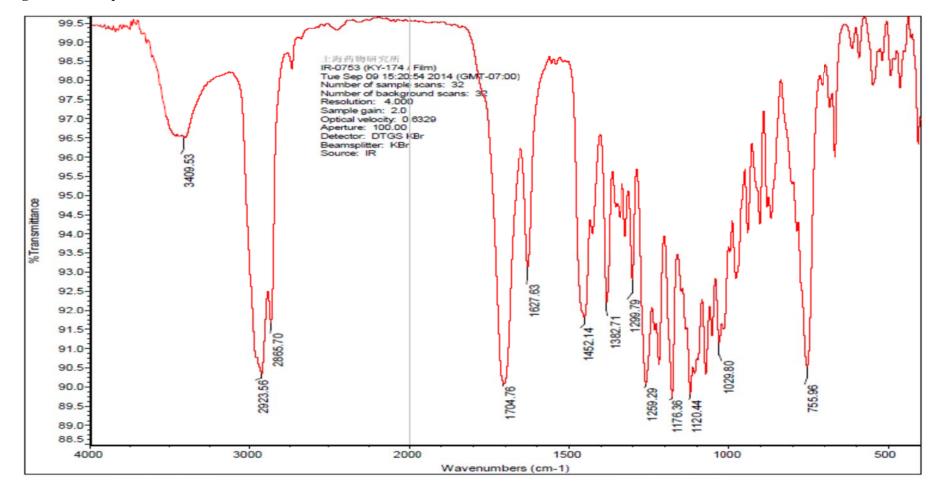
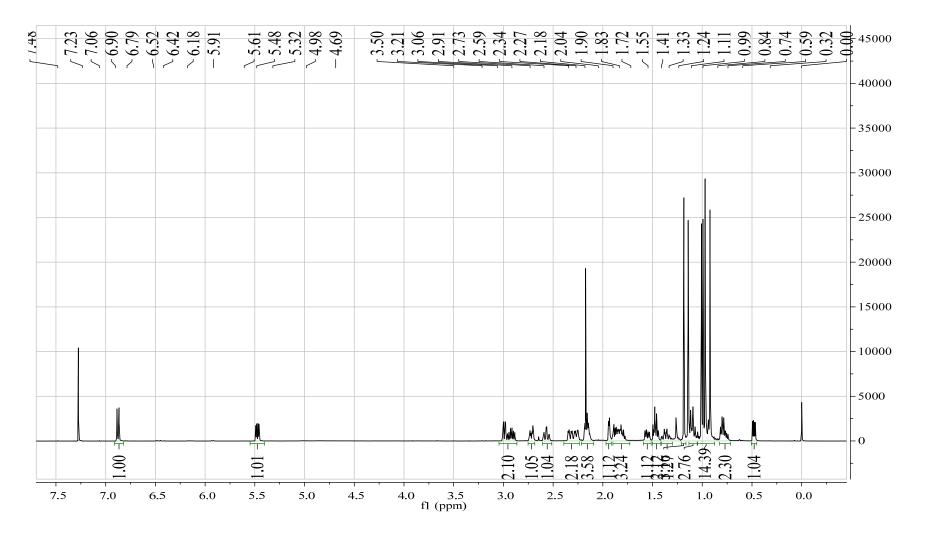
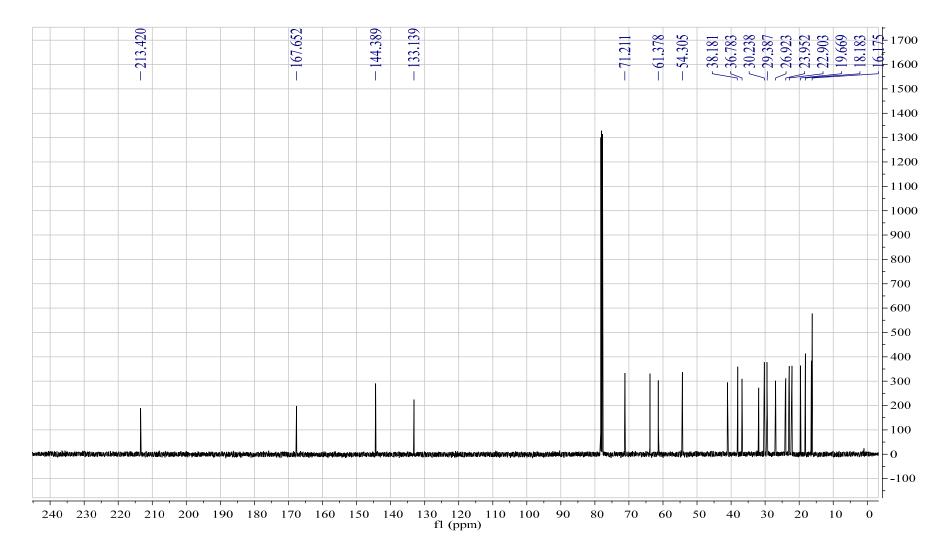
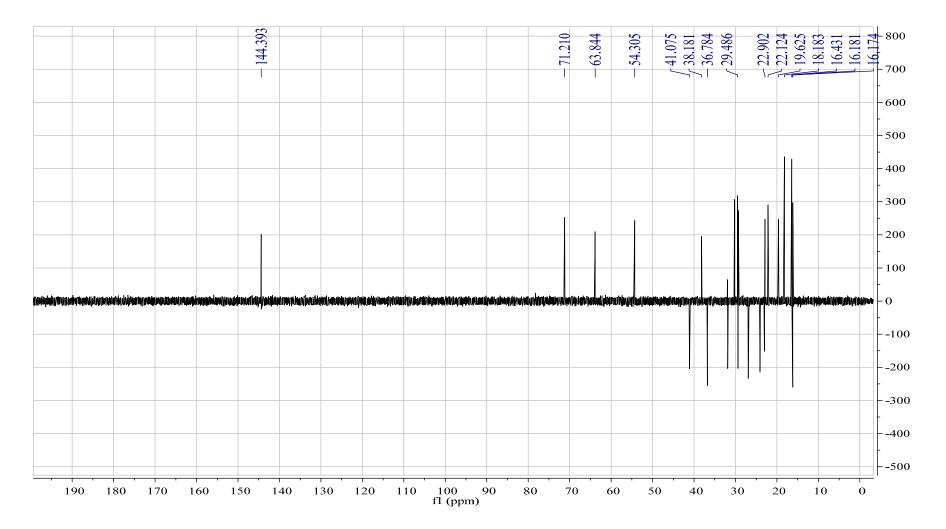
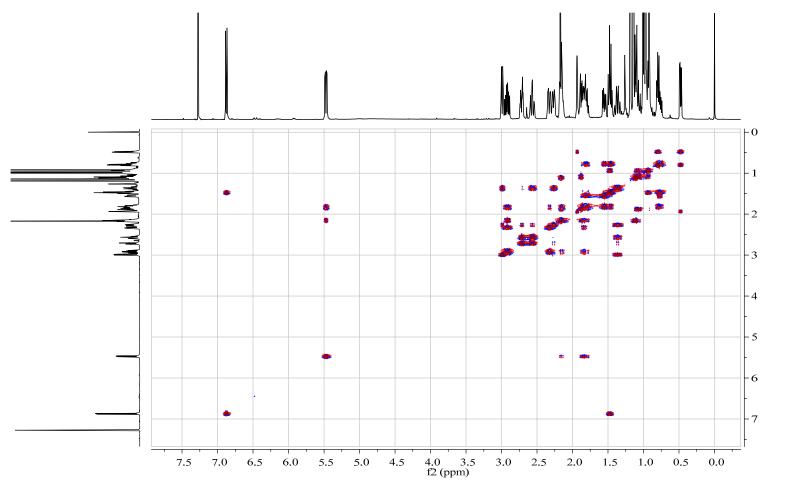



Figure S13 IR spectrum of 2

Figure S14 500 MHz ¹H NMR spectrum of **2** in CDCl₃

Figure S15 125 MHz ¹³C NMR spectrum of **2** in CDCl₃

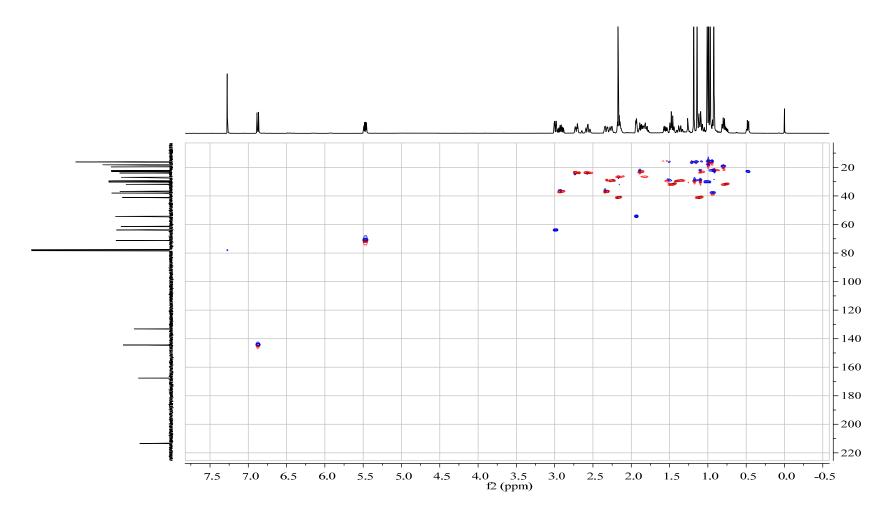
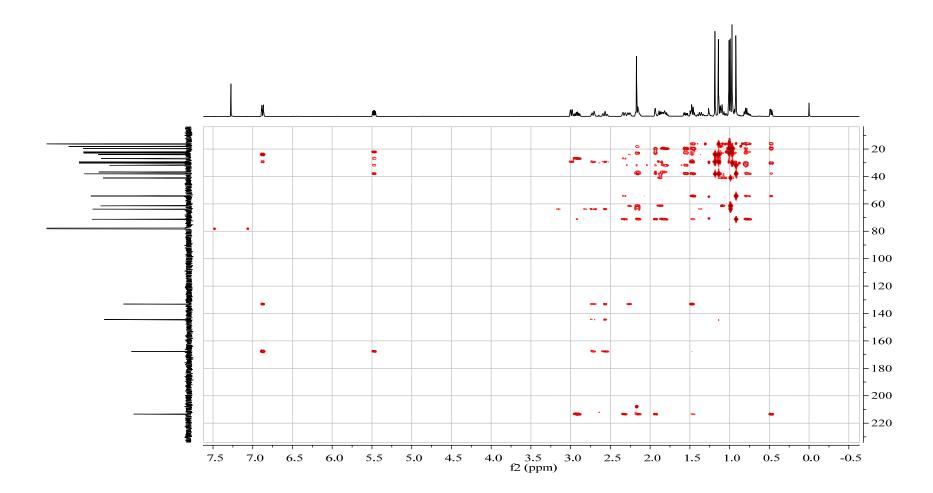
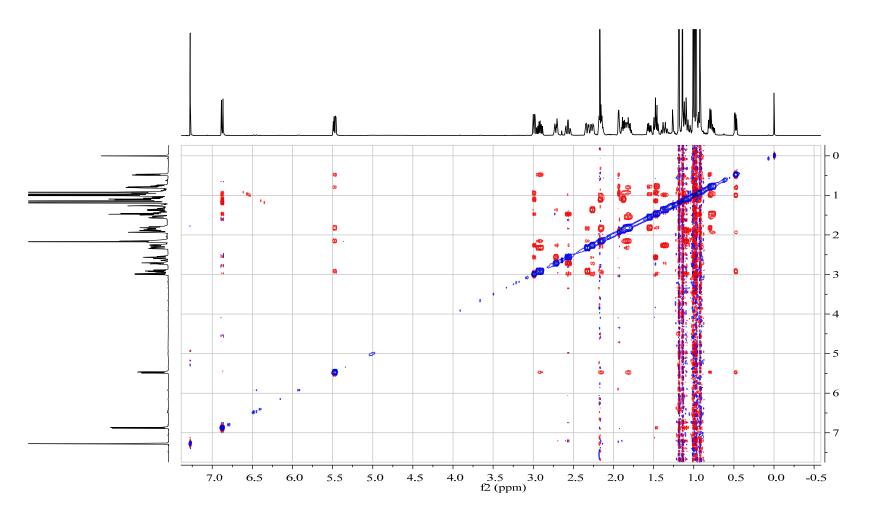

Figure S16 125 MHz DEPT NMR spectrum of 2 in CDCl₃

Figure S17 500 MHz 1 H- 1 H COSY NMR spectrum of **2** in CDCl₃



fl (ppm)

Figure S18 500 MHz HSQC NMR spectrum of **2** in CDCl₃


fl (ppm)

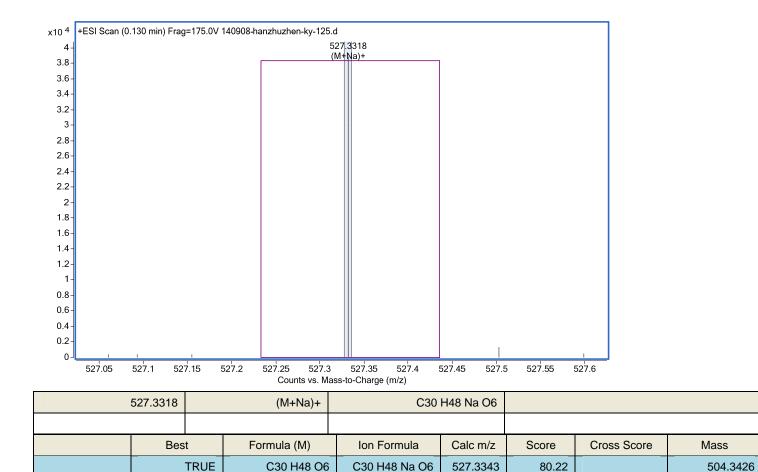
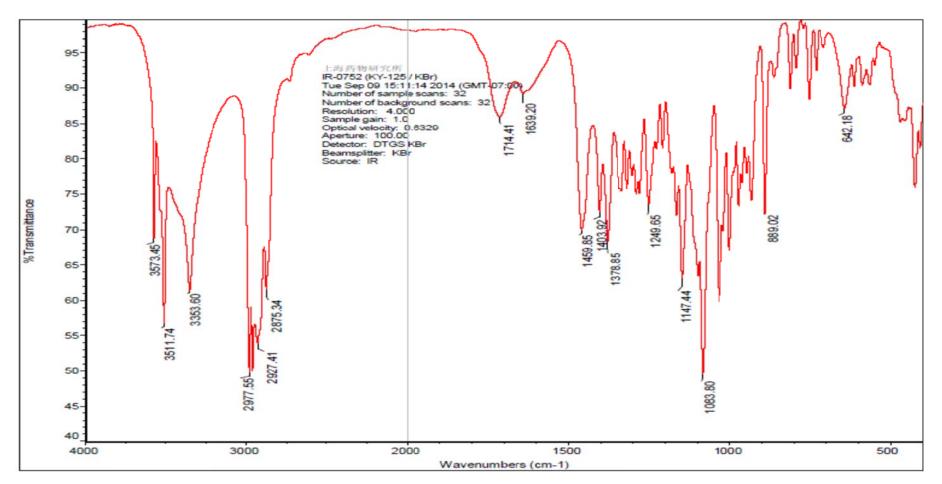

Figure S19 500 MHz HMBC NMR spectrum of **2** in CDCl₃

Figure S20 500 MHz NOESY spectrum of **2** in CDCl₃

fl (ppm)



Calc Mass

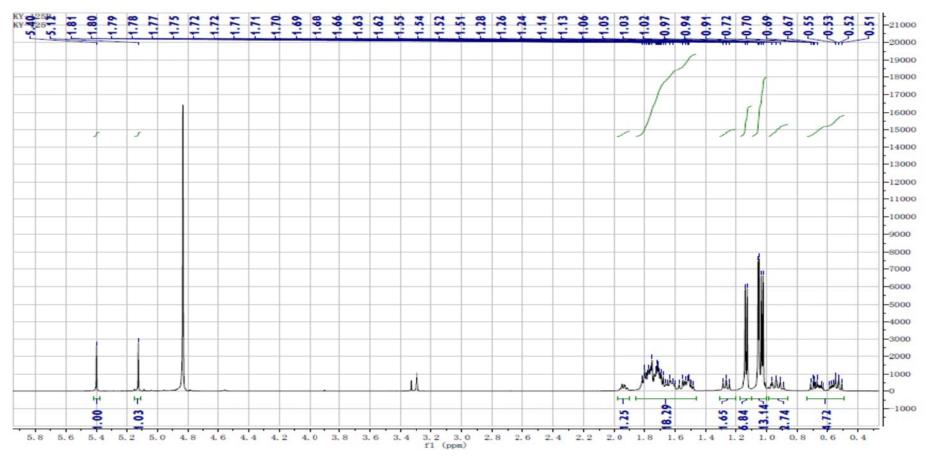

504.3451

Figure S22 HRESIMS spectrum of 3

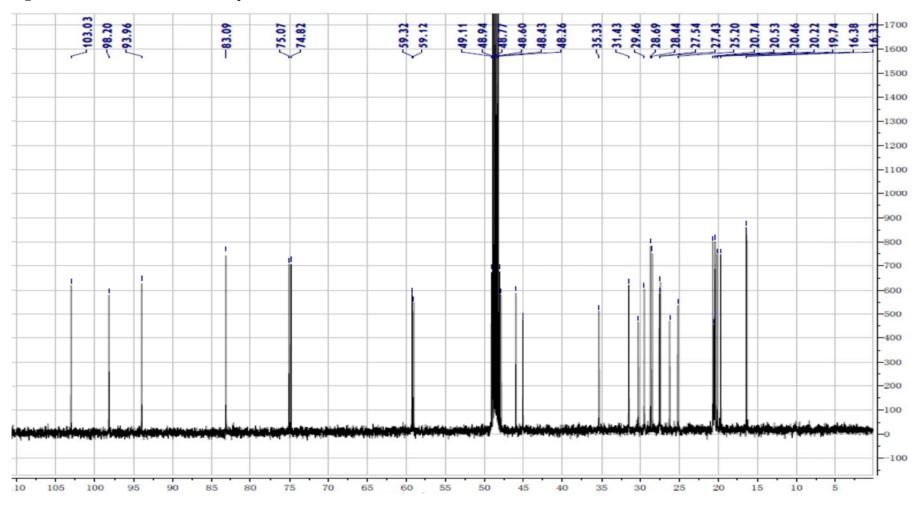


Figure S23 500 MHz ¹H NMR spectrum of **3** in CD₃OD

Figure S24 125 MHz 13 C NMR spectrum of **3** in CD₃OD

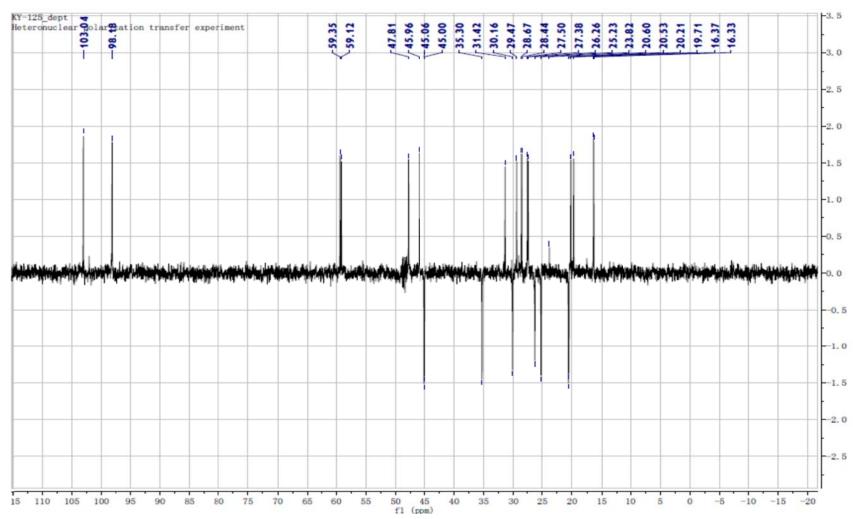
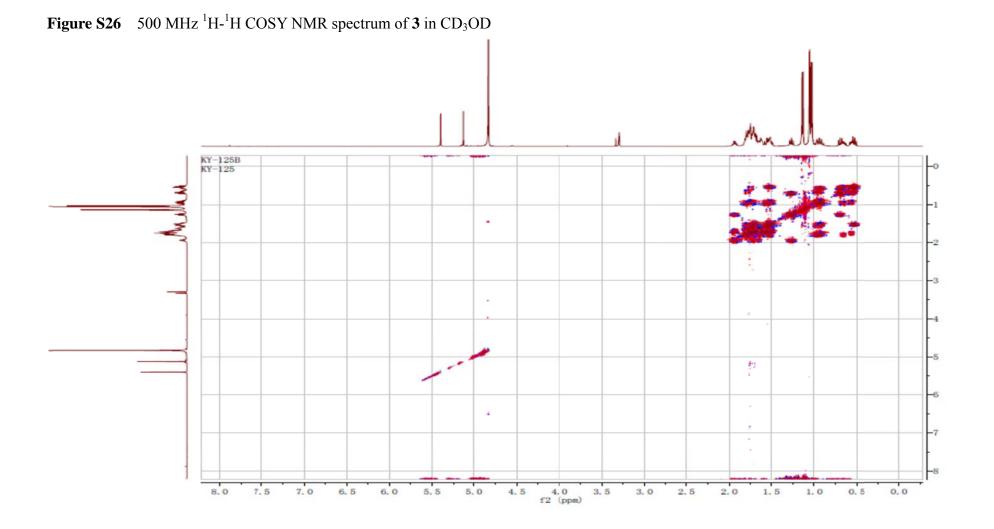



Figure S25 125 MHz DEPT spectrum of 3 in CD₃OD

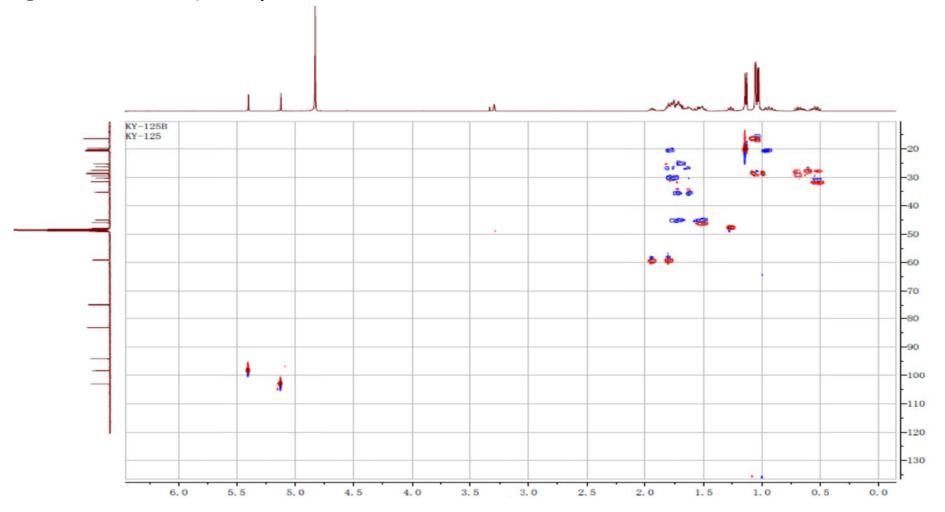
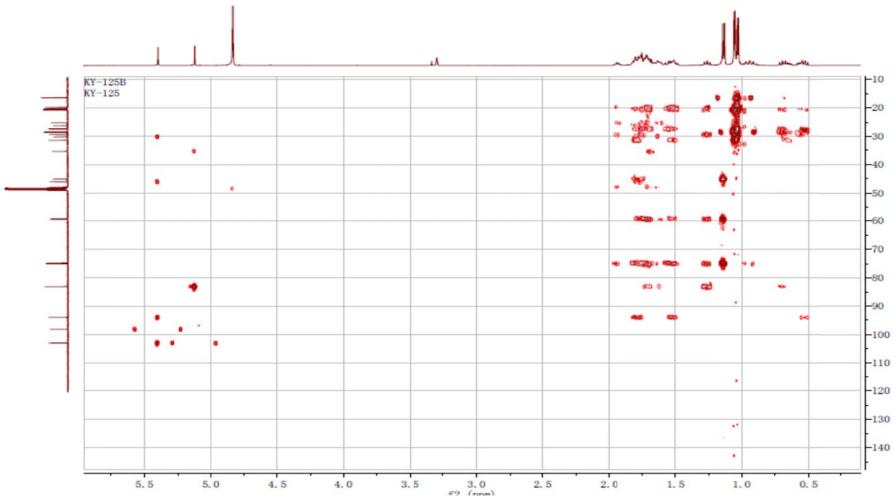
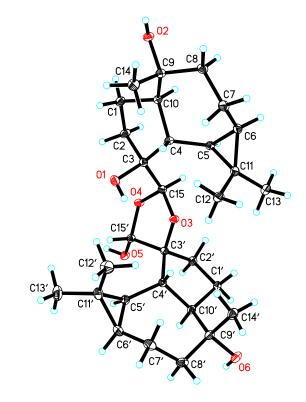
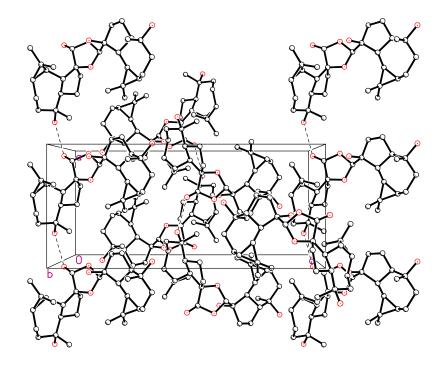


Figure S27500 MHz HSQC NMR spectrum of 3 in CD₃OD


Figure S28500 MHz HMBC NMR spectrum of 3 in CD₃OD

ιÅ. -0.5 88 00 Θ 00 D -1.0 0 0 -1.5 00 00 0 -2.0 00 -2.5 0 -3.0 ÷ -3.5 ٠ -4.0 ۰* -4.5 -5.0 -5.5 5.5 1.5 0.0 0.5 4.0 3.0 2.5 5.0 4.5 3.5 2.0 1.0

Figure S29 500 MHz NOESY NMR spectrum of **3** in CD₃OD

Figure S30 Single X-ray crystal structure and Packing diagram of **3**

Crystallographic data of 1

Indentification code	Cu_dm12499_0m		
Empirical formula	$C_{28}H_{42}O_2$		
Formula weight	410.62		
Temperature	140 (2) K		
Wavelength	1.54178Á		
Crystal system	othorhombic		
Space group	P 2(1) 2(1) 2(1)		
Unit cell dimensions	a = 8.5312 (2) Å, α = 90 °; b = 11.5963 (2) Å, β = 90 °; c = 24.0459 (5) Å, γ = 90 °		
Volume	2378.87(9) Å ³		
Ζ	4		
Calculated density	1.147 mg/m ³		
Absorption coefficient	0.530 mm ⁻¹		
F(000)	904		
Crystal size	$0.28\times0.25\times0.13\ mm^3$		
Theta range for data collection	4.23 to 69.65 °		
	-9 <= h <= 10		
Limiting indices	-13 <= k <= 14		
	-29 <= 1 <= 29		
Reflections collected / unique	18693/4410 [R(int) = 0.0379]		
Completeness to theta $= 64.99$	99.3 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.9343 and 0.8658		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	4410/0/277		
Goodness-of-fit on F ²	1.086		
Final R indices [I>2 σ (I)]	$R_1 = 0.0350, wR_2 = 0.1078$		
R indices (all data)	$R_1 = 0.0353, wR_2 = 0.1085$		
Absolute structure parameter (flack parameter)	-0.01 (18)		
Largest diff. peak and hole	0.204 and -0.213 e. Å $^{-3}$		

Single crystal for analysis was obtained from acetone solution. Data collection was performed

with a *Bruker APEX2 CCD* and graphite monochromated Cu*Ka* radiation ($\lambda = 1.54178$ Å) at 140 (2) K. *Bruker* SAINT. Program used to solve and refine structure: SHELXS-97, SHELXL-97, resp. Crystallographic data for have been deposited at the Cambridge Crystallographic Data Centre (deposition no. CCDC 928251). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK. [fax: (+44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk].

Crystallographic data of 3

tification code	Cu_dm116252_0m
rical formula	C ₃₀ H ₄₈ O ₆
ula weight	504.68
erature	173 (2) K
length	1.54178Å
al system	othorhombic
group I	P 2(1) 2(1) 2(1)
cell dimensions	a = 9.0356 (2) Å, α = 90 °; b = 14.7212 (2) Å, β = 90 °; c = 20.2608 (3) Å, γ = 90 °
ne 2	2694.99 (12) Å ³
	4
lated density	1.244 mg/m ³
rption coefficient (0.676 mm ⁻¹
))	1104
al size	$0.18\times0.16\times0.15~\text{mm}^3$
range for data collection	3.71 to 66.61 °
	-10 <= h <= 10
ing indices -	-17 <= k <= 17
	-22 <= l <= 24
ctions collected / unique	51177/4760 [R(int) = 0.0346]
bleteness to theta = 64.99	99.8 %
rption correction S	Semi-empirical from equivalents
and min. transmission	0.9054 and 0.8880
ement method	Full-matrix least-squares on F^2
/ restraints / parameters	4760/0/335
ness-of-fit on F^2	1.027
R indices $[I > 2\sigma(I)]$	$R_1 = 0.0265, wR_2 = 0.0711$
ices (all data)	$R_1 = 0.0270, wR_2 = 0.0715$
	-0.08 (11)
,	0.173 and -0.157 e. Å ⁻³
ices (all data) I lute structure parameter(flack neter)	$R_1 = 0.0270, wR_2 = 0.0715$ -0.08 (11)

Single crystal for analysis was obtained from 70% methanol-water solution. Data collection was performed with a *Bruker APEX2 CCD* and graphite monochromated Cu*Ka* radiation ($\lambda = 1.54178$)

Å) at 140 (2) K. *Bruker* SAINT. Program used to solve and refine structure: SHELXS-97, SHELXL-97, resp. Crystallographic data for have been deposited at the Cambridge Crystallographic Data Centre (deposition no. CCDC 931555). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK. [fax: (+44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk].