Electronic Supplementary Information (ESI)

A near-infrared "on-off" fluorescent and colorimetric cyanide chemodosimeter based on phenothiazine with applications in living cell imaging

Qi Zou,*a[‡] Xin Li,^{b[‡]} Qunjie Xu,^a Hans Ågren,^b Wandong Zhao^a and Yi Qu*c

^a Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, P. R. China

^b Division of Theoretical Chemistry and Biology, School of Biotechnology, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden

^c College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China

[‡] These authors contributed equally.

*Corresponding author: E-mail: qzou@shiep.edu.cn (Q. Zou); Tel. / Fax: +86-21-35303544.

E-mail: yiqu@sues.edu.cn (Y. Qu); Tel. / Fax: +86-21-67791214.

Supplementary figures and tables

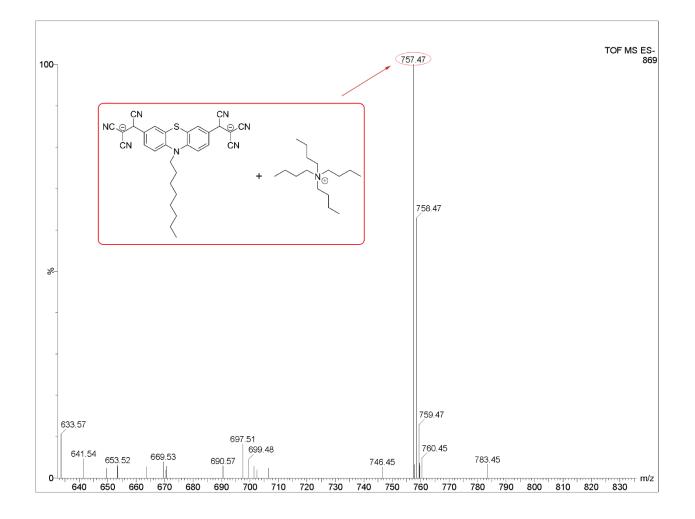
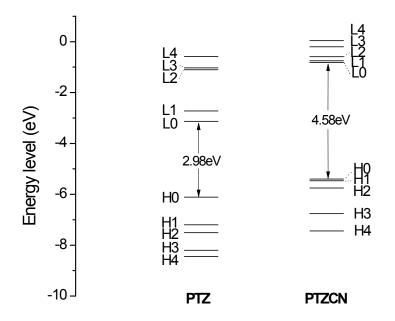



Fig. S1 MS (ESI-) spectrum of compound PTZ (10 μ M) with CN⁻ (22 μ M) in CH₃CN solution at 25 °C.

Fig. S2 Energy levels of the frontier molecular orbitals of compound **PTZ** and its adduct with CN^- . H0 = HOMO, L0 = LUMO, H1 = HOMO-1, L1 = LUMO+1, etc.

Table S1	Excitation	energies,	oscillator	strengths	and	molecular	orbital	compositions	of	low-lying
excited sta	ates of comp	ound PTZ	Z, compute	d at the TI	D-PB	E0/6-311+0	G(2d,p)	level of theory	1.	

Compound	State	$\lambda_{ m abs}$	f	MO composition	Charge
					transfer
$\mathbf{PTZ}\left(\mathbf{S}_{0}\right)$	\mathbf{S}_1	2.31 eV, 537	0.6112	$H-0 \rightarrow L+0 (98\%)$	0.217 e
		nm			
	S_2	2.86 eV, 433	0.0572	H-0 \rightarrow L+1 (96%)	0.242 <i>e</i>
		nm			

	S_3	3.36 eV, 369	0.7768	H-1 \rightarrow L+0 (95%)	0.204 e
		nm			
	S_6	4.04 eV, 307	0.8348	H-0 \rightarrow L+3 (80%)	
		nm			
PTZ (S_1)	S_1	1.78 eV, 695	0.4576	H-0 \rightarrow L+0 (98%)	0.227 e
		nm			

Table S2 Excitation energies, oscillator strengths and molecular orbital compositions of low-lying excited states of compound **PTZ**, computed at the TD-CAM-B3LYP/6-311+G(2d,p) level of theory.

Compound	State	$\lambda_{ m abs}$	f	MO composition	Charge
					transfer
PTZ	\mathbf{S}_1	2.75 eV, 451	0.9098	$H-0 \rightarrow L+0 (92\%)$	0.238 e
		nm			
	S_2	3.45 eV, 359	0.1248	H-0 \rightarrow L+1 (90%)	0.291 <i>e</i>
		nm			
	S_3	3.83 eV, 323	0.7763	H-1 \rightarrow L+0 (80%)	0.159 e
		nm			
	S_5	4.32 eV, 287	0.7747	H-0 \rightarrow L+3 (67%)	
		nm			

Table S3 Excitation energies, oscillator strengths and molecular orbital compositions of low-lying excited states of compound **PTZCN**, computed at the TD-PBE0/6-311+G(2d,p) level of theory.

Compound	State	$\lambda_{ m abs}$	f	MO composition
PTZCN	S_1	3.68 eV, 336 nm	0.0698	H-0 \rightarrow L+0 (64%)
				$\text{H-2} \rightarrow \text{L+0} \text{ (21\%)}$
	S_4	3.86 eV, 321 nm	0.0322	H-0 \rightarrow L+1 (73%)
				H-1 \rightarrow L+2 (13%)
	S_8	4.12 eV, 300 nm	0.0733	$\text{H-0} \rightarrow \text{L+0} \text{ (23\%)}$
				$\text{H-2} \rightarrow \text{L+0} \text{ (20\%)}$
				H-0 \rightarrow L+5 (17%)
				H-1 \rightarrow L+4 (12%)
	S_9	4.14 eV, 299 nm	0.2515	H-2 \rightarrow L+2 (51%)
				$H-1 \rightarrow L+1 (24\%)$
				H-0 \rightarrow L+2 (18%)
НО	MO-1	Н	ОМО	
LU	JMO	LU	MO+1	LUMO+3

Fig. S3 Contour plots of frontier molecular orbitals of compound PTZ.

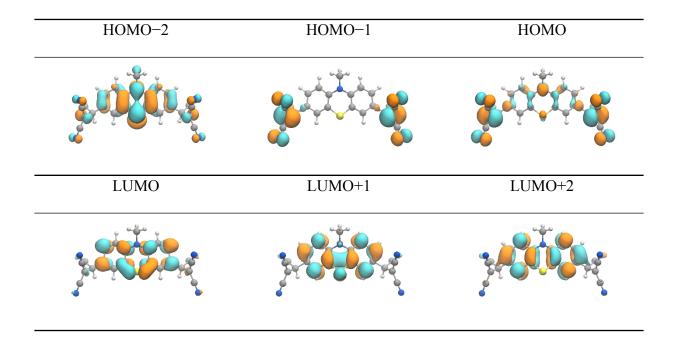
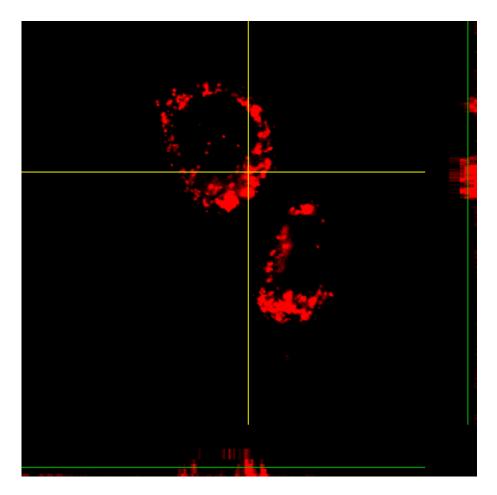
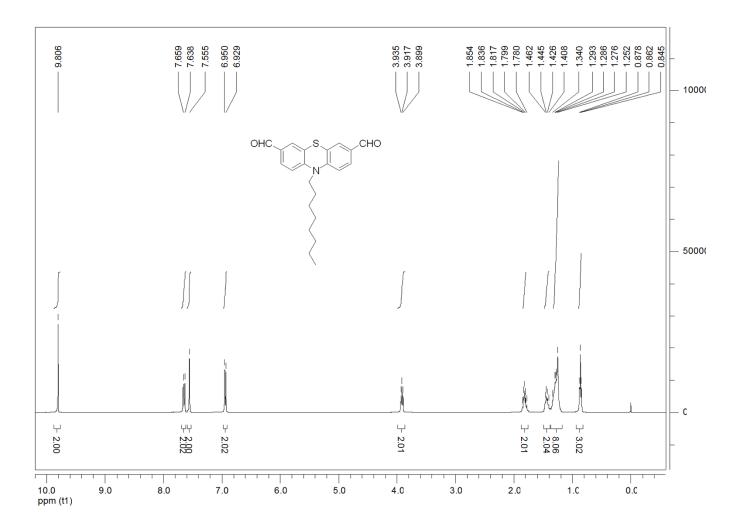




Fig. S4 Contour plots of frontier molecular orbitals of compound PTZCN.

Fig. S5 Z-scan images of HeLa cells supplemented with 20 μ M CN⁻ in the growth media for 20 min at 37 °C and then incubated with compound **PTZ** (10 μ M) for 30 min at 37 °C. $\lambda_{ex} = 488$ nm. Collecting region: 650–750 nm.

Fig. S6 ¹H NMR (CDCl₃, 400 MHz) spectrum of compound **2**.

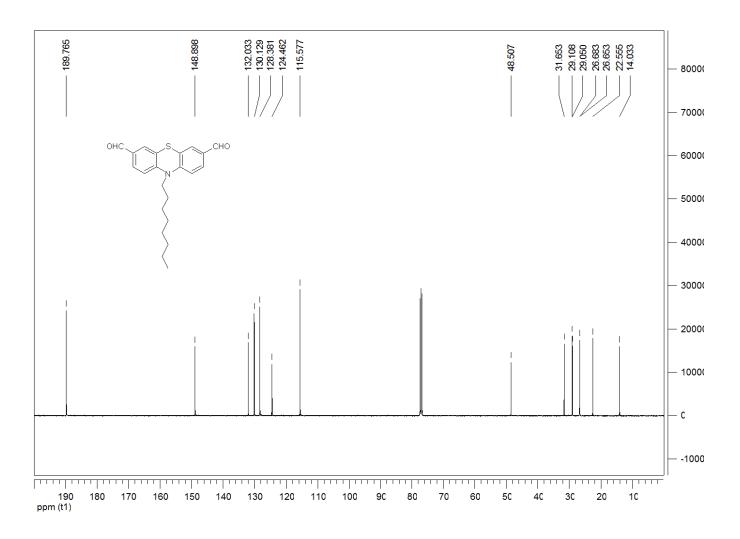


Fig. S7 ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound 2.

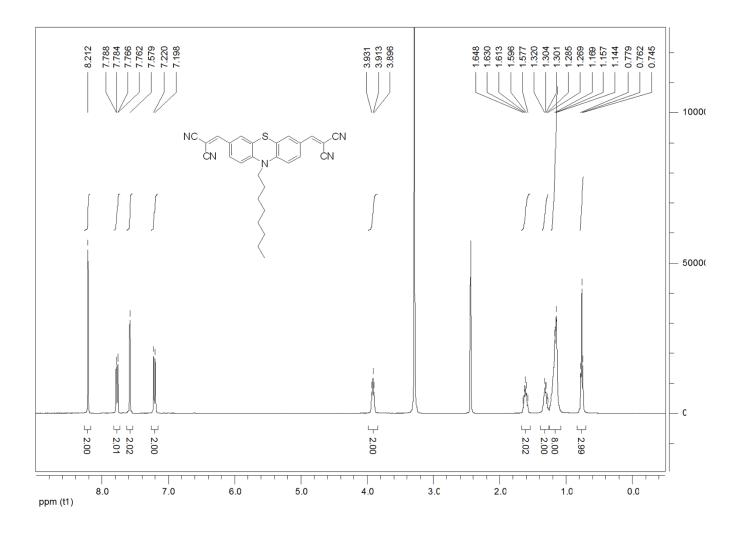


Fig. S8 ¹H NMR (DMSO- d_6 , 400 MHz) spectrum of compound PTZ.

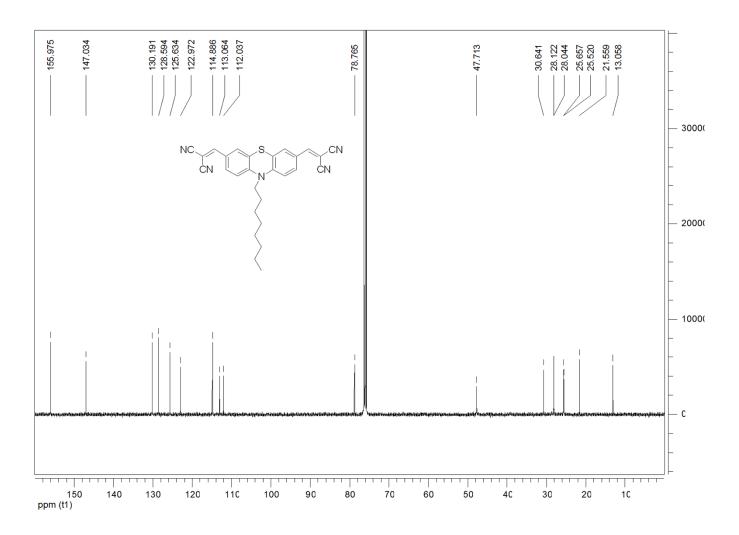


Fig. S9 ¹³C NMR (CDCl₃, 100 MHz) spectrum of compound PTZ.

Multiple Mass Analysis: 29 mass(es) processed

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 558 formula(e) evaluated with 32 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-28 H: 0-25 N: 0-5 S: 0-1

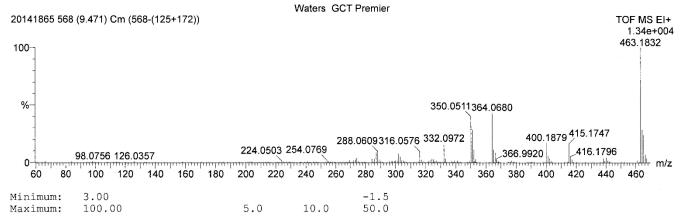


Fig. S10 HRMS (EI+) spectrum of compound PTZ.