Plasma Polymerisation of an Allyl Organophosphate Monomer by Atmospheric Pressure Pulsed-PECVD: Insights Into The Growth Mechanisms

F.Hilt, D. Duday, N. Gherardi, G. Frache, D. Didierjean, J. Bardon and P. Choquet

SUPPORTING INFORMATION

Table S1. Tentative assignment of top-30 negative secondary ions among 414 automatically detected negative ions in the mass range 1-200 as sorted by PCA, showing a trend from more organic (negative loadings) to inorganic (positive loadings) composition of the investigated films.

Tentative assignment of top-30 negatively	Tentative assignment of top-30 positively
loaded peaks (PC1)	loaded peaks (PC1)
P ₂ OH ₄ , C ₂ PO, C ₃ OH, C ₃ O, C ₂ HPO, C ₂ H ₃ ,	CH ₂ PO ₂ , CP ₂ NO ₆ , P, OH, P ₂ NO ₄ H ₂ ,
CH ₂ PO ₄ , C ₂ HP, C ₂ HPO ₂ , C ₃ H ₃ , C ₂ OH,	NH ₂ , NH, P ₂ N ₂ O ₅ , PNOH, P ₃ NO ₃ H,
CH ₂ , C ₂ H ₄ PO3, CH ₃ PN, C ₃ H ₉ PO ₄ , C ₂ H ₃ O,	PNO ₂ H, P ₂ NO ₄ H, CPN ₂ O ₂ , P ₂ NO ₂ , PNO,
H ₂ , C ₂ H ₆ PO ₄ , C ₄ H ₄ , PO ₄ H, C ₄ H ₆ PO ₃ ,	CP ₂ NO ₅ , CHP ₂ O ₄ , PO ₄ , Cl, PNO ₇ , P ₃ O ₆ ,
C ₃ H ₂ PO, CH ₂ P, H ₃ PO ₄ , CH, C ₂ H, C ₃ H ₂ ,	F, O, ¹⁸ O, P ₂ NO ₃ , P ₂ NO ₅ H ₂ , NO, O ₂ H,
C ₃ H ₂ PO ₂ , C ₄ H ₅ , C ₄ H ₈ PO ₃	O_2 , P_2NO_4

Figure S1. Top-view (a) photograph and (b) optical microscopy picture, of the film produced using a DC of 3% for a power density of 1.0 W \cdot cm⁻².

Figure S2. XPS curve-fitting of the C 1s core level of the films produced at a power density of 1.0 W \cdot cm⁻² and a DC of 3% (a) and of 33% (b).

Figure S3. Evolution of the CN violet system emission ($\Delta v = 0$) normalised to the N₂ SPS (C³ $\Pi_u \rightarrow B^3 \Pi_g, \Delta v = -2$).

Figure S4. DART MS/MS of protonated DEAP (NCE=20) showing the loss of ethyl groups as preferential fragmentation pathway.