Benzimidazolium-based new flexible cleft built on piperazine unit: A case of selective fluorometric sensing of ATP

Kumaresh Ghosh*a, Debojyoti Tarafdara, Asmita Samadderb and Anisur Rahman Khuda- Bukhshb

^aDepartment of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, Fax: +913325828282; Tel: +913325828750; ^bDepartment of Zoology, University of Kalyani, Kalyani-741235, India.

Figure 1S. Change in emission of 1 ($c = 2.5 \times 10^{-5}$ M) in CH₃CN-H₂O (1:1/v/v, using 10 mM HEPES, pH 6.4) upon addition of (a) Na₃PO₄ , (b) Na₂HPO₄, (c) NaH₂PO₄, (d) ADP, (e) AMP, (f) Na₃HP₂O₇, (g) Na₄P₂O₇, (h) G1P, (i) G6P; [concentration of anions of sodium salts were 1 x 10⁻³ M].

2. Change in absorbance of receptor 1 with various anions of sodium salt in CH₃CN-H₂O (1:1/v/v, using 10 mM HEPES, pH 6.4).

Figure 2S. Change in absorbance of 1 ($c = 2.5 \times 10^{-5} \text{ M}$) in CH₃CN-H₂O (1:1/v/v, using 10 mM HEPES, pH 6.4) upon addition of (a) Na₃PO₄, (b) Na₂HPO₄, (c) NaH₂PO₄, (d) ADP, (e) AMP, (f) ATP, (g) Na₃HP₂O₇, (h) Na₄P₂O₇, (i) G1P, (j) G6P; [concentration of anions of sodium salts were 1 x 10⁻³ M].

3. Change in emission of receptor 1 with various anions of tetrabutylammonium salts in CH₃CN-H₂O (1:1/v/v, using 10 mM HEPES, pH 6.4).

Figure 3S. Change in emission of 1 ($c = 2.5 \times 10^{-5}$ M) in CH₃CN-H₂O (1:1/v/v, using 10 mM HEPES, pH 6.4) upon addition of (a) OAc⁻, (b) HSO₄⁻, (c) NO₃⁻, (d) HP₂O₇³⁻, (e) F⁻, (f) Cl⁻, (g) Br⁻, (h) I⁻, (i) H₂PO₄⁻ and (j) ClO₄⁻; [anions were taken as their tetrabutylammonium salts and their concentrations were 1 x 10⁻³ M].

4. NOESY spectrum of the complex of 1.ATP

Figure 4S. NOESY spectrum of 1 in the presence of equivalent amount of ATP.

5. MTT assay for receptor 1.

Figure 5S. MTT assay of receptor 1

Spectral data

¹H NMR of 1 (400 MHz, d₆-DMSO):

¹³C NMR of 1 (100 MHz, d₆-DMSO):

