Surpporting Information

ZnS microsphere/g-C $_3N_4$ composite photocatalyst with greatly

enhanced visible light performance for hydrogen evolution:

Synthesis and synergistic mechanism study

Fenfen Shi,^a Linlin Chen,^a Chaosheng Xing,^a Deli Jiang,^{*,a} Di Li,^b and Min Chen ^{*,a}

^a School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China

^b Institute of Energy, Jiangsu University, Zhenjiang 212013, China

E-mail address: dlj@ujs.edu.cn, chenmin3226@sina.com.

Fig. S1. SEM and TEM images of the pure g-C₃N₄ (a,b) and ZnS (c,d).

Fig. S2. SEM and TEM images of the resulted samples: (a,b) 20% ZnS/g-C₃N₄, (c,d) 30% ZnS/g-

C₃N₄, (e,f) 40% ZnS/g-C₃N₄, (g,h) 60% ZnS/g-C₃N₄, (i,j) 70% ZnS/g-C₃N₄.

Fig. S3. XPS spectra of g-C₃N₄, ZnS, and 50 % ZnS/g-C₃N₄ samples: (a) Zn 2p, (b) S 1s, (c) C 1s

and (d) N 1s.

Fig. S4. N_2 adsorption/desorption isotherms of g-C_3N_4 and 50% ZnS/g-C_3N_4.