Electron Supplementary Information to the Manuscript

"Nanostructured Films by the Self-Assembly of Bioactive

Copolymer"

by Olga Sinitsyna, Nadejda Davydova, Vladimir Sergeev, Elena Laukhina

Content:				
Table S1	page 1			
Figure S1	page 2			
Figure S2	page 3			
Figure S3	page 3			
Figure S4	page 4			
Figure S5	page 5			
Figure S6	page 5			
Figure S7	page 6			
Figure S8	page 6			

Table S1 Roughness parameters for the surfaces inside and outside the typical cavity: R_{max} is the maximum height difference, R_q and R_a are the root-mean-square and arithmetic average roughness, R_{sk} is skewness, and R_{ku} is kurtosis.

Parameters	R _{max} , nm	R _q , nm	R _a , nm	R _{sk}	R _{ku}
Inside	23.2	1.7	1.2	-1.2	9.4
Outside	11.45	1.3	1.0	-0.2	3.2

Figure S1 AFM image of the area of film B where a small piece of the film was removed from the mica crystal using AFM tip for the purpose of the film thickness measurement (the frame size is $4.2x4.8 \ \mu m^2$). The profile of a cut through the scratch is shown below. The depth of the scratch is about 10 nm.

Figure S2 Typical AFM image of the surface of the film B cast over a mica crystal showing large cavities formed at the film surface (the frame size is $11.2 \times 11.2 \ \mu m^2$).

Figure S3 Images of topography (**a**) and lateral force distribution (**b**) on film B cast over a mica crystal: the frame size is $6x4 \ \mu m^2$ and four surface cuts (1-, 2-, 3-, 4-) are

Figure S4 Scheme of the cavity formation in film B: 1 – unstable thin copolymer film on the mica surface (substrate), 2 – a cavity formation stage, 3 – the cavity with a thin wetting layer inside.

Figure S5 Typical AFM image of the surface of film B stored six months under ambient conditions (the frame size is $9.8 \times 9.8 \ \mu m^2$).

Figure S6 Typical AFM image of the complex between λ -phage DNA and copolymer

1 formed on the mica surface (the frame size is $6.9 \times 6.9 \ \mu m^2$, **a**). The sample of copolymer 1 was synthesized six month before the DNA trapping experiment; the sample was stored under ambient conditions. Schematic view of one dimensional structures showed in (**a**) that might be formed via electrostatic interactions between copolymer 1 and double-stranded DNA molecules (**b**).

Figure S7 Images of topography (a) and lateral force distribution (b) on film B with trapped DNA (the frames size is $2.2x2.3 \ \mu\text{m}^2$); two surface cuts (1-, 2-) are shown.

Figure S8 Typical AFM image of "islands", which are formed on a mica crystal from a very diluted water solution of copolymer 1 (the frame size is $3.8 \times 3.8 \ \mu\text{m}^2$). The height of the

"islands" is less than 1 nm.