SERS quantitative analysis of trace HSA with Coomassie brilliant blue G-250 molecular probe in nanogold sol substrate

Aihui Liang^{§*}, Zujun Lu[§], Qingye Liu, Xinghui Zhang, Guiqing Wen, Zhiliang Jiang^{*}

Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection of Ministry Education, Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guangxi Normal University, Guilin 541004, China

Figure S1 The normal Raman and SERS spectra of CBB. (a) pH 6.6 PBS-1×10⁻³mol/L CBB-0.06 mol/L NaCl; (b) 16.74 mg/L Au-pH 6.6 PBS-2.34×10⁻⁷mol/L CBBG-0.06 mol/L NaCl

Table S1 Enhanced factor (E_f) for different SERS peak ^{<i>a</i>}					
Raman peak (cm ⁻¹)	<i>I</i> _{SERS}	K _{SERS} (L/mol)	$I_{ m NRS}$	K _{NRS} (L/mol)	E_{f}
464	64	2.7×10 ⁸	1.4	1423	1.9×10 ⁵
757	24	1.0×10 ⁸	0.4	449	2.3×10 ⁵
907	30	1.3×10 ⁸	0.1	147	8.8×10 ⁵
936	30	1.3×10 ⁸	1.0	1043	1.2×10 ⁵
1171	180	7.7×10^{8}	2.7	2666	2.9×10 ⁵
1403	173	7.4×10 ⁸	3.1	3129	2.4×10 ⁵
1612	136	5.8×10 ⁸	0.6	608	9.6×10 ⁵

^a C₁=2.34×10⁻⁷ mol/L CBBG and C₀=1×10⁻³ mol/L CBBG, K_{SERS}=I_{SERRS}/C₁, K_{NRS}=I_{NRS}/C₀, E_f=K_{SERS}/K_{NRS}.

Figure S2 RRS spectra of the PBS-NaCl-NG-CBB system (a) 16.74 mg/L Au-pH 6.6 PBS-0.06 mol/L NaCl; (b) a-0.29×10⁻⁷mol/L CBB; (c) a-1.17×10⁻⁷mol/L CBB; (d) a-3.51×10⁻⁷mol/L CBB; (e) a-4.68×10⁻⁷mol/L CBB.

Figure S3 Absorption spectra of the PBS-NaCl- NG-CBB-HSA system

Figure S4 Effect of pH on the ΔI value 16.74 mg/L Au-5.86×10⁻⁷ mol/L CBB-0.06 mol/L NaCl-1.0 mg/L HSA

Figure S5 Effect of NG concentration on the ΔI value pH 6.6 PBS -5.86×10⁻⁷ mol/L CBBG-0.06 mol/L NaCl-1.0 mg/L HSA

 $\label{eq:Figure S7} \mbox{ Figure S7} \mbox{ Effect of NaCl concentration on } \Delta I $$ pH 6.6 PBS -5.86 \times 10^{-7} \mbox{ mol/L CBBG-16.74 mg/L Au -1.0 mg/L HSA} $$$

Figure S8 working curve