Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Electronic Supplementary Information (ESI)

1, 8-Naphthalimide-based highly blue-emissive fluorophore induced by

bromine atom: reversible thermochromism and vapochromism

characteristics

Zhao Chen, Di Wu, Xie Han, Yuting Nie, Jun Yin*, Guang-Ao Yu, Sheng Hua Liu*

Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of

Chemistry, Central China Normal University, Wuhan 430079, PR China

Tel: +86-27-67867725 Fax: +86-27-67867725

Corresponding author E-mail: yinj@mail.ccnu.edu.cn; chshliu@mail.ccnu.edu.cn

Contents

1.	Experimental Section	.S2
2.	References	S4
3.	Figs. S1	S4
4.	Table S1-S4	
5.	Copies of NMR spectra and Mass spectra	S10

1. Experimental Section

Materials and measurements

The starting materials 1, 8-naphthalic anhydride, hexylamine, 6-amino-1-hexanol and hydrobromic acid 48% purchased from Alfa Aesar were used as received. ultrapure water was used in the experiments. All other reagents were purchased as analytical-grade from Shen Shi Hua Gong Company (China) and used without further purification. ¹H NMR (400 MHz) and ¹³C NMR (100.6 MHz) spectra were collected on American Varian Mercury Plus 400 spectrometer (400 MHz). ¹H NMR spectra are reported as followed: chemical shift in ppm (δ) relative to the chemical shift of TMS at 0.00 ppm, integration, multiplicities (s=singlet, d=doublet, t=triplet, m=multiplet), and coupling constant (Hz). ¹³C NMR chemical shifts reported in ppm (δ) relative to the central line of triplet for CDCl₃ at 77 ppm. EI-MS was obtained using Thermo scientific DSQII. Elemental analyses (C, H, N) were performed by the Microanalytical Services, College of Chemistry, CCNU. UV-Vis spectra were obtained on U-3310 UV Spectrophotometer. Fluorescence spectra were recorded on a Fluoromax-P luminescence spectrometer (HORIBA JOBIN YVON INC.). the absolute fluorescence quantum yield was measured by Edinburgh Instruments FLS900. The X-ray crystal-structure determinations of compounds 1 and 2 were obtained on a Bruker APEX DUO CCD system.

Scheme S1. Synthesis of the compounds 1 and 2

General procedure for the synthesis

Synthesis of **1a**: A mixture of 1, 8-naphthalic anhydride (10.1 mmol, 2.0 g), 6amino-1-hexanol (11.1 mmol) were stirred in EtOH (50 ml) for 4 hours under an argon atmosphere at 78°C. After completion of present reaction, the mixture was extracted with dichloromethane (3×20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residues were purified by column chromatography, affording the expected white solid product in a yield of 90.1%. ¹H NMR (400 MH_Z, CDCl₃): δ (ppm)= 8.59 (d, J= 4 Hz, 2H), 8.20 (d, J= 8 Hz, 2H), 7.75 (t, J= 8 Hz, 2H), 4.18 (t, J= 8 Hz, 2H), 3.64 (d, J= 8 Hz, 2H), 1.87-1.59 (m, 5H), 1.46 (t, J= 4 Hz, 4H). ¹³C NMR (100 MH_Z, CDCl₃): δ (ppm)= 163.97, 133.70, 131.25, 130.96, 127.76, 126.71, 122.30, 62.48, 40.06, 32.43, 27.82, 26.57, 25.18. EI-MS: m/z= 297.30[M]⁺. Anal. Calcd. for C₁₈H₁₉NO₃: C, 72.71; H, 6.44; N, 4.71. Found: C, 72.75; H, 6.40; N, 4.74.

Synthesis of 1: A mixture of 1a (6.7 mmol, 2.0 g), hydrobromic acid 48% (33.6 mmol) were stirred for 12 hours at 126°C. After completion of present reaction, the mixture was extracted with dichloromethane (3×20 mL). The combined organic layers were washed with brine, dried (Na₂SO₄), and concentrated in vacuo. The residues were purified by column chromatography, affording the expected white solid product in a yield of 87.0%. ¹H NMR (400 MH_Z, CDCl₃): δ (ppm)= 8.60 (d, J= 8Hz, 2H), 8.22 (d, J= 8 Hz, 2H), 7.76 (t, J= 8 Hz, 2H), 4.19 (t, J= 8 Hz, 2H), 3.42 (t, J= 6 Hz, 2H), 1.92-1.85 (m, 2H), 1.80-1.72 (m, 2H), 1.54-1.44 (m, 4H). ¹³C NMR (100 MH_Z, CDCl₃): δ (ppm)= 164.11, 133.85, 131.46, 131.13, 128.02, 126.86, 122.55, 40.19, 33.86, 32.61, 27.83, 26.22. EI-MS: m/z= 359.24[M]⁺. Anal. Calcd. for C₁₈H₁₈BrNO₂: C, 60.01; H, 5.04; N, 3.89. Found: C, 60.04; H, 5.00; N, 3.84.

Compounds 2 was prepared by procedures described in the corresponding literature.¹

Crystallographic Details

Single crystals of compounds 1 and 2 suitable for X-ray analysis were obtained by slow diffusion of *n*-hexane into a solution of dichloromethane containing small amounts of 1 and 2. Crystals of 1 and 2 with approximate dimensions of 0.10×0.10 $\times 0.10$ mm^3 for 1 and 2 were mounted on a glass fiber for diffraction experiment. Intensity data collected on Nonius Kappa CCD were а Å) diffractometer with Mo Κα radiation (0.71073)at room combination of temperature. The structures were solved by а direct methods (SHELXS-97)² and Fourier difference techniques and refined by fullmatrix least-squares (SHELXL-97)³. All non-H atoms were refined anisotropically. The hydrogen atoms were placed in the ideal positions and refined as riding atoms. Further crystal datas of 1 and 2 are summarized in Table S1 and S2. Bond distances and angles of 1 and 2 are given in Table S3 and S4. Crystallographic datas for compounds 1 and 2 in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplemental publication CCDC 1014213 (compound 1), CCDC 1014214 (compound 2).

2. References

1. S. Asaoka, N. Takeda, T. Lyoda, A. R. Cook and J. R. Miller. *J. Am. Chem. Soc.* 2008; **130**: 11912.

2. G. M. Sheldrick, SHELXS-97: Program for crystal structure solution, University of Götingen, Götingen, Germany, **1997**.

3. G. M. Sheldrick, SHELXL-97: Program for crystal structure refinement, University of Götingen, Götingen, Germany, **1997**.

3. Fig. S1

Fig. S1 Reversible temperature-dependence of the PL of 1 at 457 nm.

4. Table S1-S4

	C II D MO
Empirical formula	C_{18} H ₁₈ BrNO ₂
Formula weight	360.24
Temperature (K)	298(2)
Crystal system	Orthorhombic
Space group	Pca2(1)
<i>a</i> (Å)	24.404(4)
<i>b</i> (Å)	4.7162(9)
<i>c</i> (Å)	14.206(3)
α (deg)	90
β (deg)	90
γ (deg)	90
$V(Å^3)$	1635.1(5)
Ζ	4
Absorption coefficient (mm ⁻¹)	2.520
F (000)	736

 Table S1. Structure determination summary for the compound 1.

Theta range for data collection (deg)	2.20 to 31.59
Index ranges	-35<=h<=35, -6<=k<=6, -20<=l<=17
Reflections collected/unique	16467/5002 (R _{int} = 0.0428)
Final R indices [I>2sigma(I)]	$R_1 = 0.0404, wR_2 = 0.0976$
R indices (all data)	$R_1 = 0.0831$, $wR_2 = 0.1118$
Goodness-of-fit on F ²	0.972
Largest difference peak and hole(e Å ⁻³)	0.367, -0.431

 Table S2. Structure determination summary for the compound 2.

Empirical formula	C ₁₈ H ₁₉ NO ₂
Formula weight	281.34
Temperature (K)	298(2)
Crystal system	Monoclinic
Space group	P2(1)/n
<i>a</i> (Å)	8.2418(14)
<i>b</i> (Å)	16.336(3)
<i>c</i> (Å)	11.3610(19)
α (deg)	90
β (deg)	103.266(3)
γ (deg)	90
$V(Å^3)$	1488.8(4)
Z	4
Absorption coefficient (mm ⁻¹)	0.082
F (000)	600
Theta range for data collection (deg)	2.22 to 25.99
Index ranges	-10<=h<=10, -20<=k<=20, -13<=l<=14
	11160/2930
Reflections collected/unique	$(R_{int} = 0.0346)$
Final R indices [I>2sigma(I)]	$R_1 = 0.0569, wR_2 = 0.1592$
R indices (all data)	$R_1 = 0.0689, wR_2 = 0.1744$
Goodness-of-fit on F ²	1.036
Largest difference peak and hole(e Å ⁻³)	0.625, -0.295

 Table S3. Bond lengths [Å] and angles [°] of 1.

Br(1)-C(18)	1.948(3)	C(16)-H(16B)	0.9700
C(1)-O(1)	1.206(3)	C(17)-C(18)	1.495(4)
C(1)-N(1)	1.398(4)	C(17)-H(17A)	0.9700
C(1)-C(2)	1.481(4)	C(17)-H(17B)	0.9700
C(2)-C(3)	1.362(4)	C(18)-H(18A)	0.9700
C(2)-C(12)	1.405(4)	C(18)-H(18B)	0.9700
C(3)-C(4)	1.404(5)		
C(3)-H(3)	0.9300	O(1)-C(1)-N(1)	120.0(3)
C(4)-C(5)	1.355(5)	O(1)-C(1)-C(2)	123.1(3)
C(4)-H(4)	0.9300	N(1)-C(1)-C(2)	116.9(2)
C(5)-C(6)	1.411(4)	C(3)-C(2)-C(12)	120.2(3)
C(5)-H(5)	0.9300	C(3)-C(2)-C(1)	119.7(3)
C(6)-C(7)	1.416(4)	C(12)-C(2)-C(1)	120.2(2)
C(6)-C(12)	1.421(4)	C(2)-C(3)-C(4)	120.2(3)
C(7)-C(8)	1.353(5)	C(2)-C(3)-H(3)	119.9
C(7)-H(7)	0.9300	C(4)-C(3)-H(3)	119.9
C(8)-C(9)	1.393(4)	C(5)-C(4)-C(3)	121.0(3)
C(8)-H(8)	0.9300	C(5)-C(4)-H(4)	119.5
C(9)-C(10)	1.379(4)	C(3)-C(4)-H(4)	119.5
C(9)-H(9)	0.9300	C(4)-C(5)-C(6)	120.6(3)
C(10)-C(12)	1.408(4)	C(4)-C(5)-H(5)	119.7
C(10)-C(11)	1.475(3)	C(6)-C(5)-H(5)	119.7
C(11)-O(2)	1.213(3)	C(5)-C(6)-C(7)	123.4(3)
C(11)-N(1)	1.399(4)	C(5)-C(6)-C(12)	118.2(3)
C(13)-N(1)	1.468(3)	C(7)-C(6)-C(12)	118.4(2)
C(13)-C(14)	1.512(4)	C(8)-C(7)-C(6)	121.1(3)
C(13)-H(13A)	0.9700	C(8)-C(7)-H(7)	119.5
C(13)-H(13B)	0.9700	C(6)-C(7)-H(7)	119.5
C(14)-C(15)	1.520(4)	C(7)-C(8)-C(9)	120.6(3)
C(14)-H(14A)	0.9700	C(7)-C(8)-H(8)	119.7
C(14)-H(14B)	0.9700	C(9)-C(8)-H(8)	119.7
C(15)-C(16)	1.525(4)	C(10)-C(9)-C(8)	120.7(3)
C(15)-H(15A)	0.9700	C(10)-C(9)-H(9)	119.7
C(15)-H(15B)	0.9700	C(8)-C(9)-H(9)	119.7
C(16)-C(17)	1.510(4)	C(9)-C(10)-C(12)	119.8(2)
C(16)-H(16A)	0.9700	C(9)-C(10)-C(11)	119.8(2)

C(12)-C(10)-C(11)	120.4(2)	C(16)-C(15)-H(15B)	109.0
O(2)-C(11)-N(1)	120.4(2)	H(15A)-C(15)-H(15B)	107.8
O(2)-C(11)-C(10)	122.7(2)	C(17)-C(16)-C(15)	112.5(2)
N(1)-C(11)-C(10)	116.9(2)	C(17)-C(16)-H(16A)	109.1
C(2)-C(12)-C(10)	120.8(2)	C(15)-C(16)-H(16A)	109.1
C(2)-C(12)-C(6)	119.8(2)	C(17)-C(16)-H(16B)	109.1
C(10)-C(12)-C(6)	119.4(2)	C(15)-C(16)-H(16B)	109.1
N(1)-C(13)-C(14)	111.7(2)	H(16A)-C(16)-H(16B)	107.8
N(1)-C(13)-H(13A)	109.3	C(18)-C(17)-C(16)	115.3(3)
C(14)-C(13)-H(13A)	109.3	C(18)-C(17)-H(17A)	108.5
N(1)-C(13)-H(13B)	109.3	C(16)-C(17)-H(17A)	108.5
C(14)-C(13)-H(13B)	109.3	C(18)-C(17)-H(17B)	108.5
H(13A)-C(13)-H(13B)	107.9	C(16)-C(17)-H(17B)	108.5
C(13)-C(14)-C(15)	112.7(2)	H(17A)-C(17)-H(17B)	107.5
C(13)-C(14)-H(14A)	109.1	C(17)-C(18)-Br(1)	112.8(2)
C(15)-C(14)-H(14A)	109.1	C(17)-C(18)-H(18A)	109.0
C(13)-C(14)-H(14B)	109.1	Br(1)-C(18)-H(18A)	109.0
C(15)-C(14)-H(14B)	109.1	C(17)-C(18)-H(18B)	109.0
H(14A)-C(14)-H(14B)	107.8	Br(1)-C(18)-H(18B)	109.0
C(14)-C(15)-C(16)	113.1(2)	H(18A)-C(18)-H(18B)	107.8
C(14)-C(15)-H(15A)	109.0	C(1)-N(1)-C(11)	124.8(2)
C(16)-C(15)-H(15A)	109.0	C(1)-N(1)-C(13)	118.0(2)
C(14)-C(15)-H(15B)	109.0	C(11)-N(1)-C(13)	117.0(2)

Table S4. Bond lengths [Å] and angles $[\circ]$ of 2.

C(1)-O(1)	1.215(2)	C(6)-C(11)	1.413(3)
C(1)-N(1)	1.393(2)	C(6)-C(7)	1.417(2)
C(1)-C(2)	1.472(2)	C(7)-C(8)	1.406(2)
C(2)-C(3)	1.373(3)	C(8)-C(9)	1.378(2)
C(2)-C(7)	1.413(2)	C(8)-C(12)	1.474(3)
C(3)-C(4)	1.407(3)	C(9)-C(10)	1.403(3)
C(3)-H(3)	0.9300	C(9)-H(9)	0.9300
C(4)-C(5)	1.355(3)	C(10)-C(11)	1.356(3)
C(4)-H(4)	0.9300	C(10)-H(10)	0.9300
C(5)-C(6)	1.411(3)	C(11)-H(11)	0.9300
C(5)-H(5)	0.9300	C(12)-O(2)	1.214(2)

C(12)-N(1)	1.398(2)	C(11)-C(6)-C(7)	117.96(19)
C(13)-N(1)	1.476(2)	C(8)-C(7)-C(2)	120.68(15)
C(13)-C(14)	1.502(3)	C(8)-C(7)-C(6)	119.99(16)
C(13)-H(13A)	0.9700	C(2)-C(7)-C(6)	119.32(17)
C(13)-H(13B)	0.9700	C(9)-C(8)-C(7)	120.28(17)
C(14)-C(15)	1.523(3)	C(9)-C(8)-C(12)	119.46(17)
C(14)-H(14A)	0.9700	C(7)-C(8)-C(12)	120.26(15)
C(14)-H(14B)	0.9700	C(8)-C(9)-C(10)	119.6(2)
C(15)-C(16)	1.542(3)	C(8)-C(9)-H(9)	120.2
C(15)-H(15A)	0.9700	C(10)-C(9)-H(9)	120.2
C(15)-H(15B)	0.9700	C(11)-C(10)-C(9)	120.96(19)
C(16)-C(17)	1.493(3)	С(11)-С(10)-Н(10)	119.5
C(16)-H(16A)	0.9700	C(9)-C(10)-H(10)	119.5
C(16)-H(16B)	0.9700	C(10)-C(11)-C(6)	121.17(19)
C(17)-C(18)	1.493(3)	С(10)-С(11)-Н(11)	119.4
C(17)-H(17A)	0.9700	C(6)-C(11)-H(11)	119.4
C(17)-H(17B)	0.9700	O(2)-C(12)-N(1)	120.01(17)
C(18)-H(18A)	0.9600	O(2)-C(12)-C(8)	123.17(17)
C(18)-H(18B)	0.9600	N(1)-C(12)-C(8)	116.81(15)
C(18)-H(18C)	0.9600	N(1)-C(13)-C(14)	112.10(16)
		N(1)-C(13)-H(13A)	109.2
O(1)-C(1)-N(1)	120.17(16)	C(14)-C(13)-H(13A)	109.2
O(1)-C(1)-C(2)	122.70(17)	N(1)-C(13)-H(13B)	109.2
N(1)-C(1)-C(2)	117.12(15)	C(14)-C(13)-H(13B)	109.2
C(3)-C(2)-C(7)	120.02(16)	H(13A)-C(13)-H(13B)	107.9
C(3)-C(2)-C(1)	119.96(16)	C(13)-C(14)-C(15)	112.45(17)
C(7)-C(2)-C(1)	120.02(16)	C(13)-C(14)-H(14A)	109.1
C(2)-C(3)-C(4)	120.31(19)	C(15)-C(14)-H(14A)	109.1
C(2)-C(3)-H(3)	119.8	C(13)-C(14)-H(14B)	109.1
C(4)-C(3)-H(3)	119.8	C(15)-C(14)-H(14B)	109.1
C(5)-C(4)-C(3)	120.64(19)	H(14A)-C(14)-H(14B)	107.8
C(5)-C(4)-H(4)	119.7	C(14)-C(15)-C(16)	111.89(17)
C(3)-C(4)-H(4)	119.7	C(14)-C(15)-H(15A)	109.2
C(4)-C(5)-C(6)	120.81(18)	C(16)-C(15)-H(15A)	109.2
C(4)-C(5)-H(5)	119.6	C(14)-C(15)-H(15B)	109.2
C(6)-C(5)-H(5)	119.6	C(16)-C(15)-H(15B)	109.2
C(5)-C(6)-C(11)	123.14(18)	H(15A)-C(15)-H(15B)	107.9
C(5)-C(6)-C(7)	118.90(18)	C(17)-C(16)-C(15)	114.96(18)

C(17)-C(16)-H(16A)	108.5	H(17A)-C(17)-H(17B)	107.8
C(15)-C(16)-H(16A)	108.5	C(17)-C(18)-H(18A)	109.5
C(17)-C(16)-H(16B)	108.5	C(17)-C(18)-H(18B)	109.5
C(15)-C(16)-H(16B)	108.5	H(18A)-C(18)-H(18B)	109.5
H(16A)-C(16)-H(16B)	107.5	C(17)-C(18)-H(18C)	109.5
C(18)-C(17)-C(16)	112.7(2)	H(18A)-C(18)-H(18C)	109.5
C(18)-C(17)-H(17A)	109.0	H(18B)-C(18)-H(18C)	109.5
C(16)-C(17)-H(17A)	109.0	C(1)-N(1)-C(12)	124.96(14)
C(18)-C(17)-H(17B)	109.0	C(1)-N(1)-C(13)	118.38(15)
C(16)-C(17)-H(17B)	109.0	C(12)-N(1)-C(13)	116.61(15)

5. Copies of NMR spectra and Mass spectra

