Supplementary Information

Comparison between SnSb-C and Sn-C composites as anode materials for Li-ion

batteries

Long Fan ^a, Jingjing Zhang ^a, Yongchun Zhu ^{a, *}, Xiaobo Zhu ^a, Jianwen Liang ^a, Lili

Wang^a, and Yitai Qian^{a, b, *}

a Department of Chemistry, University of Science and Technology of China, Hefei,

Anhui, 230026, PR China

b School of Chemistry and Chemical Engineering, Shandong University, Jinan

250100, PR China

***Corresponding author: Yong-Chun Zhu, E-mail: ychzhu@ustc.edu.cn;

Yi-Tai Qian, E-mail: ytqian@ustc.edu.cn

Synthesis of SnO² precursor

The $SnO₂$ precursor was prepared by a hydrothermal method. In a typical synthesis, 2 mmol SnCl₄·5H₂O were added to a 40 mL mixture of ethanol and water (1/1; v/v) under magnetic stirring. When the mixture was dispersed to form a homogeneous solution, 8ml 1M NaOH solution was dropwise added to the above solution under magnetic stirring . After 1h stirring, the mixture was transferred into a Teflon-lined stainless steel autoclave with a capacity of 60 mL for hydrothermal treatment at 180 °C for 24 h. Finally, the product was collected and washed with with deionized water and ethanol for several times and then dried under vacuum at 50 °C for 12 hour.

SnO² nanocomposite precursor characterization

Figure S1. (a) XRD pattern, (b) SEM and (c) TEM image of the SnO₂ nanoparticles.

Fig. S1a show the XRD pattern of the $SnO₂$ nanoparticles precursor. All the identified diffraction peaks can be assigned to the tetragonal phase of cassiterite $SnO₂$ (JCPDS card No. 41-1445). The size and morphology of the as prepared $SnO₂$ nanoparticles precursor were investigated by SEM (Figure S1b) and TEM (Figure S1c).

Sn-C composite characterization

Figure S2. (a) XRD pattern, (b) Raman spectrum, (c) SEM image, (d) TEM image of the Sn-C composite.

Figure S2a show the XRD pattern of the Sn-C composite. All the identified diffraction peaks can be assigned to the body-centered cubic (bcc) Sn (JCPDS card No.86-2265). Raman spectra (Figure S2b) confirmed the presence of carbon in the sample as two peaks locating at 1305 and 1580 cm-1 are detected for the characteristic D-band and G-band of graphite, which originate from disordered and ordered graphitic carbon, respectively. The morphology of the as prepared Sn-C composite was investigated by SEM (Figure S2c) and TEM (Figure S2d).

Figure S3. (a) bright-field STEM image of SnSb-C composite after 120 charge/discharge cycles at 100 mA g^{-1} , (b-d) EDX maps of Sn, Sb, and C, respectively; **Figure S4** AC impedance of the electrodes composed of SnSb-C and Sn-C composite.

Table. S1 Comparison of SnSb-C (this work) and various reported SnSb-C or SnSb-graphene composites.