Supporting Information

Hyperbranched copper phthalocyanine decorated Fe₃O₄ microspheres with extraordinary microwave absorption properties

Fanbin Meng and Xiaobo Liu*

Research Branch of Functional Polymer Composites, Institute of Microelectronic & Solid

State Electronic, University of Electronic Science and Technology of China, Chengdu

610054, P. R. China

E-mail: liuxb@uestc.edu.cn

Scheme S1. Chemical Structure of the HBCuPc

Figure S1. Magnetization curves applied magnetic field at room temperature of Fe_3O_4 and $Fe_3O_4/HBCuPc$ composites with different treatment time

Sample	Hc (Oe)	Ms (emu g ⁻¹)
Fe ₃ O ₄	188.3	82.7
Fe ₃ O ₄ /HBCuPc-treated 5h	247.1	63.5
Fe ₃ O ₄ /HBCuPc-treated 10 h	242.5	48.1
Fe ₃ O ₄ /HBCuPc-treated 15h	240.4	24.7

Table S1 Magnetization data for Fe₃O₄/HBCuPc with different treatment time

Figure S2. XPS spectra of Fe 2p (a) and Cu 2p (b) for Fe₃O₄/HBCuPc

Figure S3. The reflection losses of Fe₃O₄ in different thickness of Fe₃O₄.

phase composition	optimum thickness	optimum frequency	R _{Lmax}	absorption bandwidth
	(mm)	(GHz)	(dB)	(<-10 dB, GHz)
Fe ₃ O ₄ /PEDOT ¹	4	9.5	-30	4
Fe_3O_4/r - GO^2	2	12.9	-24	4.9
$Fe_3O_4/TiO_2{}^3$	5	17.3	-20.6	3
Fe_3O_4/SnO_2^4	4	16.7	-27.4	5
Fe_3O_4/PPy^5	2.3	12.9	-22.4	5
Fe ₃ O ₄ /CuPc ⁶	2.6	12.6	-35	2

Table S2 Absorption properties of the Fe₃O₄-based magnetic materials

1 Zhou, W. C.; Hu, X. J.; Bai, X. X.; Zhou, X.Y.; Sun, C. H.; Yan, J.; Chen, P. ACS Appl. *Mater. Inter.* **2011**, *3*, 3839–3845

2 Xu, H. L.; Bi, H.; Yang, R. B. J. Appl. Phys. 2012, 111, 07A522-1-07A522-3.

3 Zhu, C. L.; Zhang, M. L.; Qiao, Y. J.; Xiao, G.; Zhang, F.; Chen, Y. J. J. Phys. Chem. C, **2010**, 114, 16229–16235

4 Chen, Y. J.; Gao, P.; Wang, R. X.; Zhu, C. L.; Wang, L. J.; Cao, M. S.; Jin, H. B. J. Phys. Chem. C. 2009, 113, 10061–10064.

5 Lia, Y. B.; Chen, G.; Li, Q. H.; Qiu, G. Z.; Liu, X. H. J. Alloy. Compd. 2011, 509, 4104-4107.

6 Ma, Zhen, Zhao, Rui, Yang, Xulin, Wei, J. J. Wei, Meng, F.B, Liu, X. B. Mater. Lett., 2012, 69, 30-33.

Figure S4. The relationships between tan $\delta\epsilon$ and tan $\delta\mu$ of Fe₃O₄/HBCuPc with different treatment time (a) 5 h, (b) 10 h and (c) 15 h