Supporting Information For

Symmetrical Non-Chelating Poly-N-Heterocyclic Carbenes

Ying-Hsuan Chen, Kai-En Peng, Gene-Hsiang Lee, Shie-Ming Peng, Ching-Wen Chiu*

Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan, 10617.

General information:

Air and moisture sensitive reactions were carried out under an atmosphere of N2 using standard Schlenk techniques or inside the glovebox. Dichloromethane was dried via passing through the molecular sieves packed drying column under nitrogen. THF was dried using Na/K alloy, and distilled under inert atmosphere. 1,3,5-tri (4-aminophenyl) benzene¹ and tetra-(4-aminophenyl) methane² were synthesized according to published procedures. ¹H and ¹³C NMR spectra were recorded using Bruker Avance III 400 MHz NMR and Bruker AVIII 500MHz FT-NMR. The ¹H and ¹³C NMR spectra reported in ppm (δ) are relative to the chemical shift of solvent residual signals for CDCl3 at 7.26 and 77.00 ppm, DMSO-d6 at 2.50 and 39.52 ppm, The elemental analysis was recorded on Thermo Flash 2000. The ESI MASS was recorded on Bruker micrOTOF-QII.

X-ray Crystallography:

Diffraction data of $[2a][I]_2$ and $[2a-(NiCpI)_2]$ were collected at T = 150(2) K with a NONIUS KappaCCD diffractometer and [5][I] was collected at T = 150(2) K with a BRUKER SMART APEXCCD area detector diffractometer. Both of the diffractometers were equipped with a rotation anode using graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Diffraction data were collected over the full sphere and were corrected for absorption. Cell parameters were retrieved and refined using DENZO-SMN for [2a][I]₂ and [2a-(NiCpI)₂] and Bruker SAINT software for [5][I] on all reflections. Data reduction was performed with DENZO-SMN ($[2a][I]_2$ and [2a-(NiCpI)₂]) and Bruker SAINT software ([5][I]). Structural analysis was conducted using the SHELXTL program on a personal computer. All the structures were solved and refined using the SHELXL-97 program by full-matrix least-squares on F² values. Hydrogen atoms were added to the structure models in calculated positions. Crystallographic data have been deposited at the Cambridge Crystallographic Data Center with deposition number CCDC-1020160, CCDC-1020161, and CCDC-1020162, for $[2a][I]_2$, $[2a-(NiCpI)_2]$, and [5][I], respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

Syntheses: *N*-alkyl-benzimidazole-5,6-dicarboxylic anhydride (1).

Sodium (0.35 g, 15.3 mmol) was dissolved in 85 mL anhydrous MeOH under nitrogen atmosphere in iced bath. Dimethyl 5,6-benzimidazoledicarboxylate³ (3 g, 12.8 mmol) was added into the solution, and the reaction mixture was allowed to stir for 30 min at room temperature. Ethyl iodide 4 mL (8 g, 51.2 mmol) was then added to give a light yellow solution. The mixture was stirred at room temperature for 18 h, and then refluxed for another 5 h. The light yellow solution was concentrated under reduced pressure to give light yellow oil. After purification with silica gel column chromatography (MeOH/CH₂Cl₂ = 3:97), dimethyl *N*-ethyl-5,6-benzimidazolate was obtained as pale yellow solid (2.53 g, yield 73%). The N-ethyl derivative (3 g, 12.1 mmol) was then dissolved in a mixture of 100 mL MeOH/H₂O (v/v = 9:1), and then KOH (2.04 g, 36.3 mmol) was added. After addition, the light yellow solution was refluxed for 18 h. After cooling to room temperature and concentrated under reduced pressure, the resulting yellow oil was acidified with 5 mL 12 M HCl aqueous solution. The whole mixture was brought to dryness under vacuum, and then was mixed with 20 mL of acetic anhydride. After refluxing for 3 h, the resulting heterogeneous solution was filtered while the solution was warm. The collected filtrate was mixed with 30 mL of diethyl ether to yield light yellow precipitates. The solid was collected by filtration and washed with diethyl ether (10 mL x 2) to give compound 1 as light yellow solid (2.23 g, yield 91%). ¹H NMR (DMSO-d⁶, 400 MHz): 8 8.76 (s, 1H, CH), 8.50 (s, 1H, Ar-H), 8.31 (s, 1H, Ar-H), 4.47 (q, J = 7.3 Hz, 2H, NCH₂), 1.45 (t, J = 7.3 Hz, 3H, NCH₂CH₃) ppm. ¹³C NMR (*d*⁶-DMSO, 100 MHz):δ 163.7, 149.5, 148.4, 138.6, 124.6, 124.1, 227.4, 109.5, 40.1, 15.3 ppm. HRMS (ESI-TOF) calcd for C₁₁H₉N₂O₃ [M+H]⁺ 217.0608, found: 217.0605.

General Synthetic Procedure for Poly-benzimidazolium salts.

Compound 1 (208 mg for $[2a]I_2$, 312 mg for $[3]I_3$, 416 mg for $[4]I_4$, and 104 mg for [5]I) and 0.4 mmol of polyamine were dissolved in 20 mL of CH₃CN/DMF (v/v = 1:1). The solution was refluxed for 18 h to yield pale yellow precipitates. The precipitates were collected and refluxed in 30 mL DMF in the presence of ethyl iodide(1.28 mL for $[2a]I_2$, 1.92 mL for $[3]I_3$, 2.56 mL for $[4]I_4$, and 0.64 mL for [5]I). After refluxing for 18 h, the mixture turned from opaque to clear yellow solution. The solution was then cooled to room temperature, and mixed with 30 mL of diethyl ether to yield yellow precipitates. The solid was collected and washed with diethyl ether (5 mL x 2) to give product as yellow solid.

[2a][I]_{2.} Yellow solid (255 mg, yield: 78 %). M.p.: > 290 °C. ¹H NMR (DMSO-*d*₆, 400 MHz): δ 10.07 (s, 2H, CH), 8.88 (s, 4H, Ar-H), 7.72 (s, 4H, Ar-H), 4.67 (q, J = 7.2 Hz, 8H, NCH₂), 1.59 (t, J = 7.2 Hz, 12H, NCH₂CH₃) ppm.¹³C NMR (DMSO-*d*₆, 100 MHz): δ 165.8, 145.5, 134.7, 131.4, 129.3, 127.9, 110.7, 42.9, 14.3 ppm. HRMS (ESI-TOF) calcd for C₃₂H₃₀N₆O₄ [M-2I⁻]²⁺ 281.1159, found: 281.1148.

[**2b**][I]₂. Yellow solid (39 mg, yield: 12%). M.p.: 167 °C (dec). ¹H NMR (DMSO- d_6 , 400 MHz): δ 10.02 (s, 2H, CH), 8.74 (S, 4F, Ar-H), 7.74 (m, 4H, Ar-H), 4.56 (q, J = 7.2 Hz, 8H, NCH₂), 1.52 (t, J = 7.2 Hz, 12H, NCH₂CH₃) ppm. ¹³C NMR (DMSO- d_6 , 100 MHz): δ 165.3, 146.2, 135.3, 130.3, 130.1, 129.2, 129.1, 111.3, 43.3, 14.7 ppm. HRMS (ESI-TOF) calcd for C₃₂H₃₀N₆O₄I [M-I⁻]¹⁺ 689.1368, found: 689.1357; calcd for C₃₂H₃₀N₆O₄ [M-2I⁻]²⁺ 281.1159, found: 281.1163.

[**3**][I]₃. Yellow solid (536 mg, yield: 95%). M.p.: 250 °C (dec). ¹H NMR (DMSOd₆, 400 MHz): δ 10.07 (s, 3H, CH), 8.87 (s, 6H, Ar-H), 8.14 (d, J = 8.5 Hz, 6H, Ar-H), 8.13 (s, 3H, Ar-H), 7.69 (d, J = 8.5 Hz, 6H, Ar-H), 4.68 (q, J = 7.2 Hz, 12H, NCH₂), 1.60 (t, J = 7.2 Hz, 18 H, NCH₂CH₃) ppm. ¹³C NMR (DMSO- d_6 , 100 MHz): δ 166.4, 145.9, 141.5, 140.3, 135.2, 131.9, 129.9, 128.3, 128.2, 125.6, 111.1, 43.4, 14.8 ppm. HRMS (ESI-TOF) calcd for C₆₃H₅₄N₉O₆ [M-3I⁻]³⁺ 344.1394, found: 344.1394.

[4][I]₄. Yellow solid (682 mg, yield: 95%). M.p.: 264 °C (dec). ¹H NMR (DMSOd₆, 400 MHz): δ 10.05 (s, 4H, CH), 8.84 (s, 8H, Ar-H), 7.57 (m, 16H, Ar-H), 4.66 (q, J = 7.2 Hz,16H, NCH₂), 1.58 (t, J = 7.2 Hz, 24H, NCH₂CH₃) ppm. ¹³C NMR (DMSO-d₆, 100 MHz): δ 166.3, 146.3, 146.0, 135.3, 131.2, 130.3, 129.7, 127.2, 111.1, 43.4, 14.8 ppm; HRMS (ESI-TOF) calcd for C₇₇H₆₈N₁₂O₈I₂ [M-2I⁻]²⁺ 771.1681, found: 771.1659; calcd for C₇₇H₆₈N₁₂O₈I [M-3I⁻]³⁺ 471.8104, found: 471.8111; calcd for C₇₇H₆₈N₁₂O₈ [M-4I⁻]⁴⁺ 322.1315, found: 322.1319; Anal. Calcd. for C₇₇H₆₈N₁₂O₈I₄•H₂O: C, 50.95; H, 3.89; N, 9.26%, found: C, 50.14; H, 4.22; N, 8.96%.

[**5**][I]. Yellow solid (127 mg, yield: 71 %). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 10.05 (s, 1H, CH), 8.84 (s, 2H, Ar-H), 7.58 (m, 2H, Ar-H), 7.51 (m, 3H, Ar-H), 4.67 (q, J = 7.2 Hz, 4H, NCH₂), 1.59 (t, J = 7.2 Hz, 6H, NCH₂CH₃) ppm.¹³C NMR (DMSO-*d*₆, 100 MHz): δ 165.8, 145.4, 134.6, 131.7, 129.3, 128.9, 128.8, 128.3, 127.2 42.9, 14.3 ppm. HRMS (ESI-TOF) calcd for C₁₉H₁₈N₃O₂ [M-I⁻]⁺ 320.1394, found: 320.1401; Anal. Calcd. for C₁₉H₁₈N₃O₂I•H₂O: C, 49.05; H, 4.33; N, 9.03%, found: C, 49.91; H, 4.11; N, 9.26%.

General Synthetic Procedure for Poly-nuclear Ni-NHC complexes.

0.07 mmol of poly-benzimidazolium salt and NiCp₂ (29 mg for [**2a**-(NiCpI)₂], 44 mg for [**3**-(NiCpI)₃], 58 mg for [**4**-(NiCpI)₄], and 15 mg for [**5**-(NiCpI)]) were dissolved in 10 mL of anhydrous THF/DMF (v/v = 1:1). The reaction mixture was refluxed for two days under N₂ to yield a dark red solution. After reaction, 20 mL of diethyl ether and 10 mL of hexane were added to the solution to yield dark red precipitates. The solid was collected and washed with hexane (5 mL) and diethyl ether (5 mL x 2). The nickel complex was further purified by re-precipitation of product from CH₂Cl₂ solution with diethyl ether, and dried under vacuum.

[**2a**-(NiCpI)₂]. Crimson solid (44 mg, yield: 59%). ¹H NMR (CDCl₃, 400 MHz): δ 7.90 (s, 4H, Ar-H), 7.67 (s, 4H, Ar-H), 5.48 (s, 10H, Cp), 5.29 (m, 4H, NCH₂), 5.08 (m, 4H, NCH₂), 1.69 (t, J = 7.2 Hz, 12H, NCH₂CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 191.7, 166.4, 138.8, 131.2, 126.9, 126.3, 105.8, 92.7, 46.0, 14.7 ppm. HRMS (ESI-TOF) calcd for C₄₂H₃₈N₆O₄Ni₂I [M-I⁻]¹⁺ 933.0701, found: 933.0685; calcd for C₄₂H₃₈N₆O₄Ni₂ [M-2I⁻]²⁺ 403.0825, found: 403.0829; Anal. Calcd. for C₄₂H₃₈N₆O₄Ni₂I₂: C, 47.50; H, 3.61; N, 7.91%, found: C, 46.69; H, 3.64; N, 7.43%.

[**3**-(NiCpI)₃]. Crimson solid (50 mg, yield: 40%). ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (m, 15H, Ar-H), 7.62 (d, J = 7.2 Hz, 6H, Ar-H), 5.48 (s, 15H, Cp), 5.30 (m, 6H, NCH₂), 5.04 (m, 6H, NCH₂), 1.67 (m, 18H, CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 191.5, 166.7, 141.5, 140.6, 138.8, 131.2, 128.1, 126.9, 126.4, 125.4, 105.7, 92.6, 46.0, 14.7 ppm. HRMS (ESI-TOF) calcd for C₇₈H₆₆N₉O₆Ni₃I [M-2I⁻]²⁺ 762.6115, found: 762.6084; calcd for C₇₈H₆₆N₉O₆Ni₃ [M-3I⁻]³⁺ 466.1060, found: 466.1077; Anal. Calcd. for C₇₈H₆₆N₉O₆Ni₃I₃: C, 52.57; H, 3.73; N, 7.07%, found: C, 52.68; H, 4.06; N, 7.19%

[4-(NiCpI)₄]. Crimson solid (125 mg, yield: 78%). ¹H NMR (CDCl₃, 400 MHz): δ 7.88 (s, 8H, Ar-H), 7.47 (m, 24H, Ar-H), 5.46 (s, 20H, Cp), 5.27 (m, 8H, NCH₂), 5.06 (m, 8H, NCH₂), 1.67 (s, 24H, CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 191.6, 191.4, 166.6, 138.8, 131.7, 126.4, 125.4, 105.7, 92.6, 46.0, 14.7 ppm. HRMS (ESI-TOF) calcd for C₉₇H₈₄N₁₂O₈Ni₄I₂ [M-2I⁻]²⁺ 1015.1014, found: 1015.1027; calcd for C₉₇H₈₄N₁₂O₈Ni₄I [M-3I⁻]³⁺ 634.4326, found: 634.4326; calcd for C₉₇H₈₄N₁₂O₈Ni₄ [M-4I⁻]⁴⁺ 444.0982, found: 444.0973; Anal. Calcd. for C₉₇H₈₄N₁₂O₈Ni₄I₄: C, 50.92; H, 3.70; N, 7.35%, found: C, 50.36; H, 3.90; N, 6.75%.

[5-(NiCpI)]. Crimson solid (20 mg, yield: 52%). ¹H NMR (CDCl₃, 400 MHz): δ 7.85 (s, 2H, Ar-H), 7.49 (m, 2H, Ar-H), 7.42 (m, 3H, Ar-H), 5.44 (s, 5H, Cp), 5.24 (m, 2H, NCH₂), 5.03 (m, 2H, NCH₂), 1.65 (t, J = 7.2 Hz, 6H, NCH₂CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 191.4, 166.7, 138.7, 131.6, 129.2, 128.3, 126.5, 105.7, 92.6, 45.9, 14.7 ppm. HRMS (ESI-TOF) calcd for C₂₄H₂₂N₃O₂Ni [M-I⁻]⁺ 442.1060, found: 442.1068; Anal. Calcd. for C₂₄H₂₂N₃O₂NiI•C₄H₁₀O: C, 52.21; H, 5.01; N, 6.52%, found: C, 52.52; H, 4.34; N, 6.68%

General Synthetic Procedure for Poly-nuclear Rh-NHC complexes. 0.04 mol of Poly-benzimidazolium salt and K^tOBu (8.8 mg for [2a-[Rh(COD)I]₂], 13 mg for [3-

[Rh(COD)I]₃], and 18 mg for [4-[Rh(COD)I]₄]) were dissolved in 10 mL of anhydrous THF/DMF (v/v = 3:2). After stirring for 1 h at room temperature, [Rh(COD)Cl]₂ (22 mg for [**2a**-[Rh(COD)I]₂], 33 mg for [**3**-[Rh(COD)I]₃], and 44 mg for [**4**-[Rh(COD)I]₄]) was added and stirred for 18 h at room temperature to yield a yellow solution. After reaction, the insoluble solids were filtered off, and 20 mL of diethyl ether was added to the filtrate to give yellow precipitates. The precipitates were then collected and washed with diethyl ether (2 mL x 2) and hexane (2 mL).

[**2a**-[Rh(COD)I]₂]. Yellow brown solid (7 mg, yield: 15%). ¹H NMR (CDCl₃, 400 MHz): δ 7.86 (s, 4H, Ar-H), 7.66 (s, 4H, Ar-H), 5.44 (s, 4H, COD), 5.14 (q, *J* = 7.2 Hz, 4H, NCH₂), 4.84 (q, *J* = 7.2 Hz, 4H, NCH₂), 3.55 (s, 4H, COD), 2.41 (m, 8H, COD), 2.09 (m, 4H, COD), 1.92 (m, 4H, COD), 1.70 (t, *J* = 7.2 Hz, 12H, CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 204.3, 204.1, 166.6, 138.5, 131.2, 126.9, 126.0, 105.7, 105.5, 105.2, 99.6, 99.5, 73.0, 72.9, 44.4, 32.2, 29.4, 14.4 ppm. HRMS (ESI-TOF) calcd for C₄₈H₅₂N₆O₄Rh₂ [M-2I⁻]²⁺ 491.1075, found: 491.1085

[**3**-[Rh(COD)I]₃]. Yellow brown solid (11 mg, yield: 13%). ¹H NMR (CDCl₃, 400 MHz): δ 7.86 (m, 15H, Ar-H), 7.62 (d, 6H, J = 8.4 Hz, Ar-H), 5.45 (s, 6H, COD), 5.14 (m, 6H, NCH₂), 4.85 (m, 6H, NCH₂), 3.56 (s, 6H, COD), 2.42 (m, 12H, COD), 2.09 (m, 6H, COD), 1.92 (m, 6H, COD), 1.70 (t, J = 7.2 Hz, 18H, CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 203.9, 166.9, 141.6, 140.7, 138.5, 131.3, 128.1, 128.0, 126.9, 126.2, 125.5, 105.6, 99.6, 73.0, 72.9, 44.4, 32.2, 29.4, 28.0, 14.4 ppm. HRMS (ESI-TOF) calcd for C₈₇H₈₇N₉O₆Rh₃I [M-2I⁻]²⁺ 894.6489, found: 894.6455; calcd for C₈₇H₈₈N₉O₆Rh₃ [M-3I⁻]³⁺ 554.1309, found: 554.1322.

[4-[Rh(COD)I]₄]. Light brown solid (17 mg, yield: 16%). ¹H NMR (CDCl₃, 400 MHz): δ 7.84 (s, 8H, Ar-H), 7.48 (m, 16H, Ar-H), 5.43 (s, 8H, COD), 5.13 (q, J = 7.2 Hz, 8H, NCH₂), 4.83 (q, J = 7.2 Hz, 8H, NCH₂), 3.54 (s, 8H, COD), 2.41 (m, 16H, COD), 2.06 (m, 8H, COD), 1.91 (m, 8H, COD), 1.69 (t, J = 7.2 Hz, 24H, CH₃) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ 204.2, 203.8, 166.7, 145.4, 138.5, 131.7, 130.1, 128.7, 126.2, 125.4, 105.6, 99.5, 99.4, 73.0, 72.9, 65.8, 64.4, 44.4, 32.2, 29.4, 14.4 ppm. HRMS (ESI-TOF) calcd for C₁₀₉H₁₁₂N₁₂O₈Rh₄I₂ [M-2I⁻]²⁺ 1191.1512, found: 1191.1505; calcd for C₁₀₉H₁₁₂N₁₂O₈Rh₄I [M-3I⁻]³⁺ 751.7991, found: 751.8009; Anal. Calcd. for C₁₀₉H₁₁₂N₁₂O₈Rh₄I₄: C, 49.64; H, 4.28; N, 6.37%, found: C, 48.91; H, 4.55; N, 6.40%.

Hydrothiolation of 1-Heptyne. A stock solution containing thiophenol (8.95 mmole), 1-heptyne (3.60 mmole), and triethylamine (0.215 mmole) in 4 mL of CDCl₃ was

prepared in a glove box. To the stock solution 8.95 mmole of naphthalene was added as internal standard. Then, 0.8 mL of the resulting solution was added to Young's NMR tube loaded with catalysts consisting of 3 mol% of Ni atom (12.2 mg of [5-(NiCpI)], 11.4 mg of [2a-(NiCpI)₂], 12.8 mg of [3-(NiCpI)₃], or 12.2 mg of [4-(NiCpI)₄]). The solution was heated at 60 °C and was monitored with NMR spectroscopy. Product yield was calculated based on the integration of the multiplets centered at 8.61 ppm (naphthalene) and the terminal alkene C=CH₂ detected at 5.43 and 5.22 ppm.

Reaction time (h)	Yield of alkene (%)				
	[5- (NiCpI)]	[2a- (NiCpI) ₂]	[3- (NiCpI) ₃]	[4- (NiCpI) ₄]	
4	3	7	6	8	
8	11	13	13	17	
12	26	22	23	30	
16	50	38	38	41	
24	58	54	52	61	
36	68	77	76	72	

References:

- G. Gattuso, G. Grasso, N. Marino, A. Notti, A. Pappalardo, S. Pappalardo and M. F. Parisi, *Eur. J. Org. Chem.*, 2011, 2011, 5696-5703.
- P. Ganesan, X. Yang, J. Loos, T. J. Savenije, R. D. Abellon, H. Zuilhof and E. J. R. Sudhölter, *J. Am. Chem. Soc.*, 2005, **127**, 14530-14531.
- S. B. Kalindjian, D. J. Dunstone, C. M. R. Low, M. J. Pether, S. P. Roberts, M. J. Tozer, G. F. Watt and N. P. Shankley, *J. Med. Chem.*, 2001, 44, 1125-1133.

Figure S1 ¹H NMR spectrum of compound **1** (400 MHz, DMSO-*d*₆)

Figure S2 ¹³C NMR spectrum of compound 1 (100 MHz, DMSO-*d*₆)

Figure S3 ¹H NMR spectrum of compound [**2a**][I]₂ (400 MHz, DMSO-*d*₆)

Figure S4 ¹³C NMR spectrum of compound [2a][I]₂ (100 MHz, DMSO-*d*₆)

Figure S5 ¹H NMR spectrum of compound [**2b**][I]₂ (400 MHz, DMSO-*d*₆)

Figure S6 ¹³C NMR spectrum of compound [**2b**][I]₂ (100 MHz, DMSO-*d*₆)

Figure S7 ¹H NMR spectrum of compound [**3**][I]₃ (400 MHz, DMSO-*d*₆)

Figure S8 ¹³C NMR spectrum of compound [**3**][I]₃ (100 MHz, DMSO-*d*₆)

Figure S9 ¹H NMR spectrum of compound [4][I]₄ (400 MHz, DMSO-*d*₆)

Figure S10 ¹³C NMR spectrum of compound [4][I]₄ (100 MHz, DMSO-*d*₆)

Figure S11 ¹H NMR spectrum of compound [**5**][I] (400 MHz, DMSO-*d*₆)

Figure S12 ¹³C NMR spectrum of compound [5][I] (100 MHz, DMSO-*d*₆)

Figure S13 ¹H NMR spectrum of compound [2a-(NiCpI)₂] (400 MHz, CDCl₃)

Figure S14 ¹³C NMR spectrum of compound [2a-(NiCpI)₂] (100 MHz, CDCl₃)

Figure S15 HMBC spectrum of compound [2a-(NiCpI)₂]

Figure S16 ¹H NMR spectrum of compound [3-(NiCpI)₃] (400 MHz, CDCl₃)

Figure S17 ¹³C NMR spectrum of compound [**3**-(NiCpI)₃] (100 MHz, CDCl₃)

Figure S18 HMBC spectrum of compound [3-(NiCpI)₃]

Figure S19 ¹H NMR spectrum of compound [4-(NiCpI)₄] (400 MHz, CDCl₃)

Figure S20 ¹³C NMR spectrum of compound [4-(NiCpI)₄] (100 MHz, CDCl₃)

Figure S21 HMBC spectrum of compound [4-(NiCpI)₄]

Figure S22 ¹H NMR spectrum of compound [5-(NiCpI)] (400 MHz, CDCl₃)

Figure S23 ¹³C NMR spectrum of compound [5-(NiCpI)] (100 MHz, CDCl₃)

Figure S24 HMBC spectrum of compound [5-(NiCpI)]

Figure S25 ¹H NMR spectrum of compound [2a-[Rh(COD)I]₂] (400 MHz, CDCl₃)

Figure S26 ¹³C NMR spectrum of compound [2a-[Rh(COD)I]₂] (100 MHz, CDCl₃)

Figure S27 HMBC spectrum of compound [2a-[Rh(COD)I]₂]

Figure S28 ¹H NMR spectrum of compound [3-[Rh(COD)I]₃] (400 MHz, CDCl₃)

Figure S29 ¹³C NMR spectrum of compound [3-[Rh(COD)I]₃] (100 MHz, CDCl₃)

Figure S30 HMBC spectrum of compound [3-[Rh(COD)I]₃]

Figure S31 ¹H NMR spectrum of compound [4-[Rh(COD)I]₄] (400 MHz, CDCl₃)

Figure S32 ¹³C NMR spectrum of compound [4-[Rh(COD)I]₄] (100 MHz, CDCl₃)

Figure S33 HMBC spectrum of compound [4-[Rh(COD)I]₄]

Figure S34 mass spectrum of compound 1

printed:

282.1192

282.25

282.50

282.75

Page 1 of 1

m/z

282.00

2/27/2013 5:57:18 PM

0.5

0.0

280.75

Bruker Compass DataAnalysis 4.0

281.00

281.25

281.50

281.75

ure S36 mass spectrum of compound [2b][I]₂

Fig

Bruker Compass DataAnalysis 4.0 printed: 3/6/2013 11:56:33 AM Page 1 of 1

Figure S37 mass spectrum of compound [3][I]₃

+MS, 0.8-0.9min #(47-53)

Figure S38 mass spectrum of compound [4][I]₄

Figure S39 mass spectrum of compound [5][I]

Figure S40 mass spectrum of compound [2a-(NiCpI)₂]

Analysis Info				Acquisition Date	3/8/2013 3:09:44 PM
Analysis Name Method Sample Name Comment	D:\Data\Fish\MS20130308_L3Ni_pos_wide000001.d tune_wide_20130103.m TuningMix 1:100		Operator Instrument / Ser#	BDAL@DE micrOTOF-Q 10183	
Acquisition Para	meter				
Source Type Focus Scan Begin	ESI Active 50 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Coll PE	Positive 4500 V -500 V	Set Nebulizer Set Dry Heate Set Dry Gas	0.4 Bar r 180 °C 4.0 l/min

+MS, 1.6-1.6min #(95-96)

Figure S41 mass spectrum of compound [3-(NiCpI)₃]

Analysis Info			Acquisition Date	3/8/2013 10:36:25 AM		
Analysis Name Method Sample Name Comment	 D:\Data\Fish\MS20130308_L2Ni_pos_wide000001.d tune_wide_20130103.m TuningMix 1:100 			Operator Instrument / Ser#	BDAL@DE micrOTOF-Q	10183
Acquisition Par	ameter					
Source Type Focus Scan Begin Scan End	ESI Active 50 m/z 3000 m/z	lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 600.0 Vpp	Set Nebulizer Set Dry Heat Set Dry Gas Set Divert Va	- 0.4 i er 180 4.0 i Ive Sou	Bar °C /min rce

Focus Scan Begin Scan End Active 50 m/z 3000 m/z

Figure S42 mass spectrum of compound [4-(NiCpI)₄]

Mass Spectrum SmartFormula Report

 Analysis Info

 Analysis Name
 D:\Data\Fish\MS20140116_L9Ni_pos_low000001.d

 Method
 tune_low.m

 Sample Name
 Comment

Acquisition Date 1/16/2014 10:09:28 AM

Operator BDAL@DE Instrument / Ser# micrOTOF-Q 10183

Acquisition Par	ameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.2 Bar	
Focus	Active	Set Capillary	4500 V	Set Dry Heater	180 °C	
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Dry Gas	4.0 l/min	
Scan End	1300 m/z	Set Collision Cell RF	150.0 Vpp	Set Divert Valve	Source	

+MS, 0.0-2.0min #(2-120)

Figure S43 mass spectrum of compound [5-(NiCpI)]

Figure S44 mass spectrum of compound [2a-[Rh(COD)I]₂]

Figure S45 mass spectrum of compound [3-[Rh(COD)I]₃]

Bruker Compass DataAnalysis 4.0 printed: 3/8/2013 11:32:33 AM Page 1 of 1

Figure S46 mass spectrum of compound [4-[Rh(COD)I]₄]

Crystal Data

Table 1 Crystal data and structure refinement for ic 15835 (compound [2a][I]2).

Identification code	ic15835			
Empirical formula	C36 H36 I2 N8 O4	C36 H36 I2 N8 O4		
Formula weight	898.53			
Temperature	150(2) K	150(2) K		
Wavelength	0.71073 Å	0.71073 Å		
Crystal system	Monoclinic			
Space group	C2/c			
Unit cell dimensions	a = 21.0444(10) Å	<i>α</i> = 90°.		
	b = 12.4275(5) Å	β=114.665(2)°.		
	c = 15.2824(7) Å	$\gamma = 90^{\circ}$.		
Volume	3632.1(3) Å ³			
Z	4			
Density (calculated)	1.643 g/cm ³			
Absorption coefficient	1.782 mm ⁻¹			
F(000)	1784			
Crystal size	0.20 x 0.12 x 0.02 mm ²	0.20 x 0.12 x 0.02 mm ³		
Theta range for data collection	1.95 to 25.00°.			
-23<=h<=24, -13<=k<=14, -18<=14		=14, -18<=l<=18		
Reflections collected	11333	11333		
Independent reflections $3201 [R(int) = 0.0566]$				
Completeness to theta = 25.00°	99.9 %			
Absorption correction	Semi-empirical from e	quivalents		
Max. and min. transmission	0.952 and 0.865			
Refinement method	Full-matrix least-square	es on F ²		
Data / restraints / parameters	3201 / 0 / 229	3201 / 0 / 229		
Goodness-of-fit on F ²	1.076			
Final R indices [I>2sigma(I)]	R1 = 0.0377, wR2 = 0.	R1 = 0.0377, WR2 = 0.0802		
R indices (all data)	R1 = 0.0659, wR2 = 0.	R1 = 0.0659, wR2 = 0.0968		
Largest diff. peak and hole	0.605 and -0.788 e.Å ⁻³	0.605 and -0.788 e.Å ⁻³		

Table 2 Crystal data and structure refinement for ic16141 (compound [2a-(NiCpI)₂])

Identification code	ic16141		
Empirical formula	C44 H40 Cl6 I2 N6 Ni2 O4		
Formula weight	1300.74		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 9.0998(3) Å	<i>α</i> = 90°.	
	b = 24.2692(7) Å	β=109.2740(13)°.	
	c = 11.5148(4) Å	$\gamma = 90^{\circ}$.	
Volume	2400.45(13) Å ³		
Z	2		
Density (calculated)	1.800 g/cm ³		
Absorption coefficient	2.453 mm ⁻¹		
F(000)	1284		
Crystal size	0.20 x 0.12 x 0.02 mm ³		
Theta range for data collection	1.68 to 25.00°.		
Index ranges	-10<=h<=10, -24<=k<=28, -13<=l<=13		
Reflections collected	12336		
Independent reflections	4218 [R(int) = 0.0562]		
Completeness to theta = 25.00°	99.9 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.940 and 0.674		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4218 / 15 / 288		
Goodness-of-fit on F ²	1.333		
Final R indices [I>2sigma(I)]	R1 = 0.1254, $wR2 = 0.3282$		
R indices (all data)	R1 = 0.1690, wR2 = 0.3470		
Largest diff. peak and hole	2.986 and -2.686 e.Å ⁻³		

Identification code	ic16325		
Empirical formula	C19 H18 I N3 O2		
Formula weight	447.26		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P2(1)/c		
Unit cell dimensions	a = 14.4332(10) Å	α= 90°.	
	b = 8.5362(6) Å	β=100.356(2)°.	
	c = 15.4137(11) Å	$\gamma = 90^{\circ}$.	
Volume	1868.1(2) Å ³		
Ζ	4		
Density (calculated)	1.590 Mg/m ³		
Absorption coefficient	1.731 mm ⁻¹		
F(000)	888		
Crystal size	0.25 x 0.25 x 0.13 mm ³		
Theta range for data collection	1.43 to 27.50°.		
Index ranges	-18<=h<=16, -11<=k<=11, -17<=l<=20		
Reflections collected	13991		
Independent reflections $4273 [R(int) = 0.0357]$			
Completeness to theta = 27.50°	100.0 %		
Absorption correction	ption correction Semi-empirical from equivalents		
Max. and min. transmission	0.8063 and 0.6715		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4273 / 0 / 228		
Goodness-of-fit on F ²	1.216		
Final R indices [I>2sigma(I)]	R indices [I>2sigma(I)] $R1 = 0.0396$, wR2 = 0.0955		
R indices (all data)	R1 = 0.0473, wR2 = 0.1068		
Largest diff. peak and hole	.229 and -0.948 e.Å ⁻³		

Table 3 Crystal data and structure refinement for ic 16325 (compound [5][I]).

Figure S47. Molecular structure of [5][I]. Thermal ellipsoids were set at the 50% probability level and hydrogen atoms were omitted for clarity.