Simultaneous enhancement of fluorescence and solubility by N-alkylation and functionalization of 2-(2-thienyl)imidazo[4,5-f][1,10]-phenanthroline with heterocyclic bridges

Yu-Xin Peng, Na Wang, Yuan Dai, Bin Hu, Bin-Bin Ma and Wei Huang*

State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China

E-mail: <u>whuang@nju.edu.cn</u>

Co	ntents	Page Number
1.	NMR, EI-TOF-MS and ESI-MS spectra	\$3-\$43
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 1	\$3-\$5
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 2	S6-S8
	¹ H, ¹³ C NMR and ESI-MS spectra of compound 3	\$9-\$11
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 4	S12-S14
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 5	\$15-\$17
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 6	S18-S20
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 7	\$21-\$23
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 8	\$24-\$26
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 9	\$27-\$29
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 10	S30-S32
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 11	\$33-\$35
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 12	S36-S38
	¹ H, ¹³ C NMR and EI-TOF-MS spectra of compound 13	S39-S41
	ESI-MS spectrum of compound BM3	S42
	ESI-MS spectrum of compound BM4	S43
2.	X-ray crystallographic data of twelve compounds	S44-S65

Selected bond lengths and bond angles	-S44-S52
ORTEP diagrams of 3 ·CHCl ₃ , 4 , 5 ·CHCl ₃ and 10 ·CHCl ₃	-S53
Perspective view of the packing structures	-854-865

-S3-

-S4-

Fig. SI1. ¹H (a), ¹³C NMR (b) and EI-TOF-MS (c) spectra of compound 1.

c

Fig. SI2. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 2.

Fig. SI3. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 3.

-S12-

Fig. SI4. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 4.

-S16-

Fig. SI5. ¹H (a), ¹³C NMR (b) and EI-TOF-MS (c) spectra of compound 5.

-S19-

Fig. SI6. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 6.

-S21-

-S22-

Fig. SI7. ¹H (a), ¹³C NMR (b) and EI-TOF-MS (c) spectra of compound 7.

-S25-

Fig. SI8. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 8.

Fig. SI9. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 9.

-S31-

Fig. SI10. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 10.

-S34-

C

Fig. SI11. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 11.

b

Fig. SI12. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 12.

-S39-

-S40-

Fig. SI13. 1 H (a), 13 C NMR (b) and EI-TOF-MS (c) spectra of compound 13.

Fig. SI14. ESI-MS spectrum of compound BM3.

Fig. SI15. ESI-MS spectrum of compound **BM4**.

Bond distances		Bond angles	
$3 \cdot \mathrm{CHCl}_3$			
N1C1	1.323(5)	C1-N1-C12	117.8(2)
N1-C12	1.354(4)	C10-N2-C11	117.3(3)
N2-C10	1.322(6)	C5-N3-C13	105.9(2)
N2C11	1.349(4)	C6-N4-C13	104.3(3)
N3-C18	1.458(4)	S1C17C16	113.0(4)
N3-C5	1.385(3)	S1C14C15	110.8(3)
N3-C13	1.378(4)		
N4C6	1.381(4)		
N4C13	1.322(4)		
N4C13	1.322(4)		
S1-C17	1.708(5)		
S1-C14	1.716(4)		
4			
N1C1	1.321(3)	C1-N1-C12	118.1(2)
N1-C12	1.356(2)	C10-N2-C11	118.3(2)
N2-C10	1.320(3)	C13-N3-C5	105.9(2)
N2-C11	1.351(2)	C5-N3-C18	127.93(2)

 Table SI1. Selected bond lengths [Å] and bond angles [°] for compounds 3-13.

N3C5	1.387(2)	C5-N3-C18	127.93(2)
N3-C13	1.375(2)	C13-N4-C6	104.56(2)
N3-C18	1.460(2)	C17-S1-C14	91.7(1)
N4C6	1.372(2)		
N4C13	1.319(2)		
S1C14	1.710(2)		
S1C17	1.702(3)		
5·CHCl ₃			
Br1-C17	1.864(5)	C1-N1-C12	117.1(4)
N1C1	1.326(6)	C10-N2-C11	118.4(4)
N1-C12	1.373(5)	C13-N3-C6	106.2(3)
N2C10	1.318(6)	C13-N3-C18	126.2(3)
N2C11	1.340(6)	C6-N3-C18	127.4(4)
N3-C6	1.393(5)	C13-N4-C5	104.9(4)
N3-C13	1.362(6)	C14-S1-C17	91.1(2)
N3-C18	1.467(5)	C16-C17-Br1	127.7(3)
N4C5	1.361(5)	S1-C17-Br1	119.7(3)
N4C13	1.325(5)		
S1-C14	1.722(5)		
S1C17	1.722(4)		

6 ⋅ H ₂ O				
N1C1	1.323(4)	C1-N1-C12	117.5(3)	
N1-C12	1.357(3)	C10-N2-C11	117.5(3)	
N2-C10	1.323(4)	C13-N3-C5	106.8(2)	
N2C11	1.357(3)	C13-N3-C14	126.0(2)	
N3-C5	1.386(3)	C5-N3-C14	127.1(2)	
N3-C13	1.374(3)	C13-N4-C6	105.0(2)	
N3-C14	1.476(3)	C24-N5-C25	115.1(3)	
N4-C6	1.371(3)	C18-S1-C21	92.6(1)	
N4-C13	1.327(3)			
N5-C24	1.322(4)			
N5-C25	1.335(4)			
S1-C18	1.725(3)			
S1-C21	1.727(3)			
$(7)_2 \cdot C_2 H_5 OH \cdot (0)$	CHCl ₃) ₂			
N1C1	1.307(6)	C1-N1-C12	118.9(4)	
N1-C12	1.342(6)	C10-N2-C11	117.3(4)	
N2-C10	1.324(6)	C5-N3-C13	106.4(4)	
N2C11	1.354(5)	C5-N3-C14	128.2(4)	
N3-C5	1.376(5)	C13-N3-C14	124.7(4)	

N3-C13	1.386(6)	C13-N4-C6	118.3(2)104.4(4)
N3-C14	1.484(6)	C28-O2-C29	118.2(5)
N4C6	1.372(5)	C21-S1-C18	92.9(2)
N4C13	1.330(5)		
O1–C28	1.193(6)		
O2–C28	1.341(6)		
O2–C29	1.448(6)		
S1-C18	1.718(5)		
S1-C21	1.708(4)		
$8 \cdot \mathrm{CHCl}_3$			
N1C1	1.316(6)	C1-N1-C12	118.0(4)
N1C12	1.344(5)	C10-N2-C11	117.0(4)
N2-C10	1.327(6)	C13-N3-C5	106.5(3)
N2C11	1.349(5)	C13-N3-C14	125.0(4)
N3C5	1.393(5)	C5-N3-C14	127.1(3)
N3-C13	1.369(5)	C13-N4-C6	104.8(3)
N3-C14	1.507(5)	C34-N5-C25	117.9(3)
N4-C6	1.374(5)	C34-N5-C28	119.0(3)
N4C13	1.324(5)	C25-N5-C28	120.0(3)
N5-C25	1.419(5)	C18-S1-C21	93.3(2)

N5-C28	1.420(5)		
N5-C34	1.418(5)		
S1-C18	1.719(4)		
S1-C21	1.728(4)		
$9 \cdot \text{CHCl}_3$			
N1C1	1.310(3)	C1-N1-C12	117.4(2)
N1-C12	1.356(3)	C10-N2-C11	118.1(2)
N2C10	1.310(3)	C13-N3-C6	105.9(2)
N2C11	1.351(3)	C13-N3-C36	126.4(2)
N3-C6	1.392(3)	C6-N3-C36	127.5(2)
N3-C13	1.376(3)	C13-N4-C5	104.6(2)
N3-C36	1.456(3)	C21-N5-C25	108.2(2)
N4C5	1.366(3)	C21-N5-C30	126.3(2)
N4C13	1.310(3)	C25-N5-C30	125.4(2)
N5-C21	1.393(3)	C14-S1-C17	92.9(1)
N5-C25	1.399(3)		
N5-C30	1.422(3)		
S1-C14	1.715(2)		
S1–C17	1.716(3)		

10

N1-C1	1.312(5)	C1-N1-C12	117.2(3)
N1-C12	1.361(4)	C10-N2-C11	118.0(3)
N2-C10	1.314(5)	C13-N3-C5	106.3(3)
N2C11	1.341(5)	C13-N3-C22	125.3(3)
N3–C5	1.374(4)	C5-N3-C22	128.1(3)
N3-C13	1.371(4)	C13-N4-C6	104.9(3)
N3-C22	1.481(4)	C17-S1-C14	92.7(2)
N4-C6	1.353(4)	C18-S2-C21	93.2(2)
N4-C13	1.320(4)		
S1-C14	1.729(4)		
S1-C17	1.710(4)		
S2-C18	1.682(4)		
S2-C21	1.687(4)		
$10 \cdot CHCl_3$			
S1-C17	1.716(5)	C14-S1-C17	92.8(2)
S1-C14	1.726(5)	C18-S1'-C20	94.4(8)
S1'-C18	1.685(18)	C18-S2-C21	94.0(4)
S1'-C20	1.582(18)	C1-N1-C12	118.0(4)
S2–C18	1.684(8)	C10-N2-C11	117.0(4)
S2-C21	1.624(9)	C5-N3-C22	126.3(4)

N1C12	1.360(6)	C13-N3-C22	126.6(4)
N1-C1	1.318(6)	C5-N3-C13	106.3(3)
N2-C11	1.355(5)	C6-N4-C13	104.7(4)
N2-C10	1.310(7)		
N3-C22	1.522(6)		
N3-C5	1.384(5)		
N3-C13	1.367(6)		
N4–C6	1.372(6)		
N4C13	1.319(5)		
$11 \cdot \text{CHCl}_3$			
N1-C1	1.319(5)	C10-N2-C11	117.1(4)
N1-C12	1.360(5)	C13-N3-C5	106.3(3)
N2-C10	1.310(5)	C13-N3-C22	126.6(3)
N2-C11	1.355(5)	C5-N3-C22	126.4(4)
N3-C5	1.384(5)	C13-N4-C6	104.7(3)
N3-C13			
119 019	1.367(5)	C17-S1-C14	92.8(2)
N3-C22	1.367(5) 1.522(5)	C17–S1–C14 C21–S2–C18	92.8(2) 94.0(4)
N3-C22 N4-C6	1.367(5) 1.522(5) 1.372(5)	C17–S1–C14 C21–S2–C18 C20–S1'–C18	92.8(2) 94.0(4) 94.4(6)
N3-C22 N4-C6 N4-C13	1.367(5) 1.522(5) 1.372(5) 1.319(5)	C17–S1–C14 C21–S2–C18 C20–S1'–C18	92.8(2) 94.0(4) 94.4(6)

S1-C17	1.716(4)		
S1'-C18	1.685(2)		
S1'-C20	1.582(1)		
S2–C18	1.684(7)		
S2-C21	1.624(9)		
12			
N1-C1	1.321(6)	C1-N1-C12	118.5(5)
N1-C12	1.343(6)	C10-N2-C1	1117.5(5)
N2-C10	1.319(7)	C5-N3-C13	105.6(4)
N2-C11	1.365(6)	C5-N3-C23	126.5(4)
N3–C5	1.379(6)	C1-N3-C23	126.9(4)
N3-C13	1.384(6)	C1-N4-C6	104.7(4)
N3-C23	1.480(6)	C21-O1-C18	91.6(4)
N4-C6	1.371(6)	C14-S1-C17	92.3(3)
N4-C13	1.310(6)		
O1–C18	1.495(7)		
O1–C21	1.451(7)		
O2–C22	1.268(11)		
$13 \cdot \text{CHCl}_3$			
N1C1	1.325(4)	C1-N1-C12	117.2(2)

N1-C12	1.352(3)	C10-N2-C11	118.0(2)	
N2 –C10	1.318(4)	C1-N3-C5	104.9(2)	
N2-C11	1.356(3)	C13-N4-C6	105.8(2)	
N –C5	1.360(3)	C13-N4-C30	125.5(2)	
N3-C13	1.315(3)	C6-N4-C30	128.3(2)	
N4-C6	1.384(3)	C14-S1-C17	92.6(1)	
N4-C13	1.377(3)	C28-S2-C29	91.6(1)	
N4 –C30	1.467(3)			
S1C14	1.725(2)			
S1-C17	1.731(3)			
S2–C28	1.744(3)			
S2-C29	1.749(3)			

Fig. SI16. ORTEP diagrams (30 % thermal probability ellipsoids) of the molecular structures of **3**·CHCl₃, **4**, **5**·CHCl₃ and **10**·CHCl₃ showing the dihedral angles and relative configurations between adjacent aromatic heterocycles. All the solvent molecules are omitted for clarity.

c

e

h

k

Fig. SI17.Perspective view of the packing structure in compounds $\mathbf{3} \cdot \text{CHCl}_3$, $\mathbf{4}$, $\mathbf{5} \cdot \text{CHCl}_3$, $\mathbf{6} \cdot \text{H}_2\text{O}$, $(7)_2 \cdot \text{C}_2\text{H}_5\text{OH} \cdot (\text{CHCl}_3)_2$, $\mathbf{8} \cdot \text{CHCl}_3$, $\mathbf{9} \cdot \text{CHCl}_3$, $\mathbf{10} \cdot \text{CHCl}_3$, $\mathbf{11} \cdot \text{CHCl}_3$, $\mathbf{12}$, $\mathbf{13} \cdot \text{CHCl}_3$.