Electronic Supplementary Information (ESI)

A simple and effective fluorescent probe based on rhodamine B for determining Pd²⁺ ions in

aqueous solution

Jie Cui, Dong-Peng Li, Shi-Li Shen, Jin-Ting Liu*, Bao-Xiang Zhao*

1. Part of optical spectroscopic data

Fig. S1 Absorption responses of **RL** (10 μ M) toward different concentrations of PdCl₂ in EtOH:H₂O (3:7 v/v) buffered with PBS (10 mM, pH = 7.2) solution.

Fig. S2 Changes in fluorescent intensities at 585 nm of RL (10 μ M) in the presence of different concentrations of PdCl₂ (0 μ M to 50 μ M).

Fig. S3 Fluorescence spectral changes of RL (10 μ M)/Pd²⁺ (20 μ M) upon addition of S²⁻ (0 μ M to 30 μ M) in EtOH/PBS (3:7, v/v, pH = 7.2).

Fig. S4 Time-dependent fluorescent intensities change of RL (10 μ M) with PdCl₂ (10 μ M) in EtOH/PBS (3:7, v/v, pH = 7.2) at room temperature.

2. Summary of fluorescent probes for palladium

Luoie of fulling of fullioned entry for pulling and the second se	Table. S1	Summary	of fluorescent	probes for	palladium.
---	-----------	---------	----------------	------------	------------

Reference in the	Structure of the Main	Detection	Selectivity	Response
Main	Probe	Limit		Time
Manuscript				

This Work

21.3 nM highly selective 60 min

13g		200 nM	highly selective	1 min
15a	CI CI	_	better selective	not mentioned
16a		30 nM	better selective	3 h
16b		70 nM	highly selective	80 min
16c	NH O	6.1 nM	highly selective	not mentioned
16d	Con to the top	3.78 nM	excellent selectivity	1 h
16e		87 nM	highly selective	3 h
16f	CT-CCC	340 nM	highly selective	not mentioned
16g		2.83 nM	excellent selectivity	900 s
16h		40 nM	highly selective	3 h

18a	N CONN	185 nM	better selective	300 min
18b		180 nM	better selective	60 min
18b		1700 nM	better selective	60 min
18c		5 nM	highly selective	5 s
18d		45.9 nM	highly selective	10 min
18e		73.8 nM	highly selective	10 min

3. NMR Date

Fig. S5¹HNMR of RL

Fig. S6¹³CNMR of RL.

Fig. S7 TOF-HRMS of RL.

Fig. S8 TOF-HRMS of RL+Pd²⁺