Supporting Information

Resveratrol Improves Fungal Ribosylation Capacity through a Unique Mechanism

Guo-Yan Zhao^{1,2}, Jing-Yang Fan¹, Cheng-Pin Hua¹, Wei Yan¹, Chao-Jun Chen¹, Yan-Hua Lu², Rui-Hua Jiao¹*, Ren-Xiang Tan¹*

1. State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R.

China

2. State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200000, P. R. China

Table of Contents

Structure Determination	S2
Experimental Procedures	·S3
References	·S4
Supplementary Figures	S5
Supplementary Tables	S7
NMR Spectra ······	S15

Structure Determination

Compound **1** was obtained as an amorphous white powder and was shown to possess a molecular formula of $C_{19}H_{20}O_7$ as determined by HR-ESI-MS (found: 383.1106, calcd.: 383.1101). The ¹H NMR and ¹H-¹H COSY spectra of **1** showed the presence of a 1,3,5 trisubstituted benzene ring $[\delta_H 6.67 (1H, br t, J=2.1 Hz, H-2), \delta_H 6.57 (1H, br t, J=2.1 Hz, H-4), and <math>\delta_H 6.38 (1H, br t, J=2.1 Hz, H-6)]$, a *p*-substituted benzene ring $[\delta_H 7.40 (2H, d, J=8.8 Hz, H-2' and H-6') and <math>\delta_H 6.76 (2H, d, J=8.8 Hz, H-3' and H-5')]$ and a *trans* double bond $[\delta_H 6.87 (1H, d, J=16.4 Hz), H-7)$ and $\delta_H 7.00 (1H, d, J=16.4 Hz), H-8]$, suggesting the presence of a resveratrol moiety¹. Additionally, a ribose residue was determined by comparing the its ¹H and ¹³C NMR data with those of methyl ribofuranosides and asperflavin ribofuranoside.¹ The connection between the ribose and resveratrol was established by the key HMBC correlation from H-1" ($\delta_H 5.54$) to C-3 ($\delta_C 158.44$). The sugar moiety was further determined as α -D-ribofuranoside $J_{1,2}$ (4.3 Hz) and methyl-D-ribofuranoside $J_{1,2}$ (1.2 Hz).² Thus, structure of **1** was demonstrated to be 3-*O*- α -D-ribosyl-resveratrol.

Compound **2** was obtained as an amorphous white powder, possessed the same formula as **1**. The ¹H NMR spectrum of **2** indicated that it was an isomer of **1**. The chemical shifts and coupling relationships of aromatic protons in **1** were almost identical to those of resveratrol, suggesting the 4-O-ribosylation, which was further supported by the HMBC correlation of H-1" (δ 5.65) with C-4' (δ 158.1). The $J_{1,2,2}$ value (4.4 Hz) indicated the α configuration of C-1'. Thus, structure of **2** was clarified to be 4'-*O*- α -D-ribosyl-resveratrol.²

Compound **3**, a light yellow amorphous powder, had the molecular formula $C_{17}H_{20}O_9$, as determined by positive HR-ESI-MS (m/z 369.1177 [M + H]⁺; calcd 369.1180). The ¹H NMR spectrum revealed a ribosyl residue evidenced from the anormeric proton at δ_H 5.54 (J=4.8 Hz) and five multiplets at δ_H 4.24, 4.17, 4.18 and 3.68 and 3.54. The ¹H NMR spectrum of **3** suggested that it was a riboside of orthosporin. ³ The ribosyl group was shown to anchor on C-6 (δ_C 165.5) by the HMBC correlation of this carbon with the anomeric proton (H-1'). Thus, the structure of **3** was established as 6-O- α -D-ribosyl-orthosporin.

Compound 4 was afforded as an amorphous light yellow powder. Its molecular formula was determined to be $C_{17}H_{20}O_8$ according to the protonated molecular ion at m/z 353.1239 (353.1236 calcd. for C₁₇H₂₁O₈) in its HR-ESI-MS. The ¹H NMR spectrum of compound 4 showed resonances assignable to a pair of *meta*-coupled aromatic protons at $\delta_{\rm H}$ 6.67 (1H, d, J = 2.0 Hz, H-8) and 6.47 (1H, d, J = 2.0 Hz, H-6), a separate olefinic proton at $\delta_{\rm H}$ 6.13 (1H, s, H-3), a set of protons for propyl vinyl moiety at $\delta_{\rm H}$ 2.66 (2H, t, J = 7.6 Hz, H-11), 1.79 (2H, qt, J = 7.6 Hz, H-12) and 1.01 (3H, t, J = 7.4 Hz, H-13). The ¹H and ¹³C NMR data of 4 were similar to those of 5,7-dihydroxy-2-propylchromone 7-O-β-D-glucopyranoside,⁴ but their sugar moieties were different. As in case of 2, the signals between $\delta_{\rm H}$ 3.6 and 5.8 indicated the presence of a ribose residue. Similarly, the $J_{1',2'}$ value (4.4 Hz) demonstrated an α -configuration of the anomeric carbon (C-1'). Thus, structure of 4 elucidated was as 7-*O*-α-D-ribosyl-5-hydroxy-2-propylchromone.

Compound **5**, a light yellow amorphous powder, had the molecular formula $C_{15}H_{20}O_8$, as determined by its HR-ESI-MS (*m/z* 329.1230 [M + H]⁺; calcd. 329.1231). The ¹H NMR spectrum of **5** indicated a 1,2,3,5-tetrasubstituted benzene ring (displaying two-protons singlets at δ_H 6.16), a propyl moiety at δ_H 3.07 (2H, t, *J* = 7.2 Hz, H-8), 1.68 (2H, qt, *J* = 7.2 Hz, H-9) and 0.92 (3H, t, *J* = 7.2 Hz, H-10) and a set of protons assignable for an α -D-ribosyl residue. The ¹H NMR signals due to benzene and propyl moieties resembled those of phlorobutyrophenone, and the symmetry of benzene ring suggested the ribosyl group was anchored on C-4. Thus, the structure of **5** was assigned as 4-*O*- α -D-ribosyl-phlorobutyrophenone.⁵

Experimental Procedures

Chemicals: Resveratrol, UDP, NAD, NMN, AMP and ADP were purchased from Aladdin. SDS was purchased from Sangon Biotech.

NMR Spectroscopy: The ¹H and ¹³C NMR spectra were acquired on a Bruker Advance 400 MHz or a Bruker DRX 500 MHz NMR spectrometers equipped with a 5 mm probe head.

Phylogenetic Analysis: To identify the pgps subfamily of *Daldinia eschscolzii*, sequences of ABC transporter proteins⁶ representing different subfamilies were selected (Table S4) and aligned with

*pgp*3, 6, 7 11using Clustal W.⁷ A phylogenetic tree was then constructed with the alignment by the MEGA program (version 5.10) and the neighbor-joining method (Figure S1).⁸

References

- 1 D. Lee, M. Cuendet, J. S. Vigo, J. G. Graham, F. Cabieses, H. H. Fong, J. M. Pezzuto, A. D. Kinghorn, *Org. Lett.*, 2001, **3**, 2169-2171.
- 2 L. Du, T. Zhu, H. Liu, Y. Fang, W. Zhu, Q. Gu, J. Nat. Prod., 2008, 71, 1837-1842.
- Y. L. Zhang, J. Zhang, N. Jiang, Y. H. Lu, L. Wang, S. H. Xu, W. Wang, G. F. Zhang, Q. Xu, H. M. Ge, J. Ma, Y. C. Song, R. X. Tan, *J. Am. Chem. Soc.*, 2011, 133, 5931-5940; V. H. Deshpande, R. Beena, R. A. Khan *Tetrahedron*, 1996, 52, 7159-716.
- 4 H. Kato, W. Li, M. Koike, Y. Wang, K. Koike, *Phytochemistry*, 2010, 71, 1925–1929.
- 5 M.L. Bolte, W. D. Crow, N. Takahashi, A. Sakurai, M. Uji-ie, Yoshida, *Agric. Biol Chern.*, 1985, **49**, 761 768.
- 6 A. Kovalchuk, A. J. M. Driessen, *BMC Genomics*, 2010, **11**, 177. DOI: 10.1186/1471-2164-11-177.
- 7 M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, D. G. Higgins, *Bioinformatics*, 2007, 23, 2947-2948.
- 8 K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, *Mol. Biol. Evol.*, 2011, **28**, 2731-2739.

Supplementary Figures

Figure S1. Phylogenetic tree of fungal ABC transporter proteins. Pgps in *D. eschscholzii* and other homologous ABC transporter proteins (details in Table S3) were aligned with Clustal W.^[7] The phylogenetic tree was subsequently generated using the neighbour-joining method with MEGA 5.10^[8] software package.

Figure S2. PCR confirmation of deletions of (A) pgp3, (B) pgp6, and (C) pgp11 in D. eschscholzii. The primers (inF and inR) used for PCR analysis are list in Table S2. pgp, p-glycoprotein gene; hph, hygromycin phosphotransferase gene; $\Delta pgp3$, the strain with pgp3 gene deleted; $\Delta pgp6$, the strain with pgp6 gene deleted; $\Delta pgp11$, the strain with pgp11 gene deleted; WT, wild-type strain.

Supplementary Tables

		1 ^{<i>a</i>}		2 ^b		
position	$\delta_{ m C}$	$\delta_{ m H}$ (mult. <i>J</i> in Hz)	$\delta_{ m C}$	$\delta_{ m H}$ (mult. J in Hz)		
1	139.7		140.5			
2	106.3	6.67 (s)	105.7	6.55 (d, 2.4)		
3	158.4		159.6			
4	103.0	6.38 (t, 2.0)	102.8	6.27 (t, 2.4)		
5	158.9		159.6			
6	107.2	6.57 (s)	105.7	6.55 (d, 2.4)		
7	125.8	6.87 (d, 16.4)	128.2	6.94 (d, 16)		
8	128.4	7.00 (d, 16.4)	128.6	7.05 (d, 16)		
1'	128.9		132.2			
2'	128.4	7.40 (d, 8.8)	128.4	7.51 (d, 8.8)		
3'	116.0	6.76 (d, 8.4)	118.0	7.10 (d, 8.4)		
4'	158.0		158.1			
5'	116.0	6.76 (d, 8.4)	118.0	7.10 (d, 8.4)		
6'	128.4	7.40 (d, 8.8)	128.4	7.51 (d, 8.8)		
5-OH		9.58 (s)				
4' - OH		9.42 (s)				
1"	100.8	5.54 (d, 4.8)	101.9	5.65 (d, 4.4)		
2"	71.9	4.04 (m)	73.0	4.23 (4.4, 6.4)		
3"	69.8	3.92 (m)	70.9	4.15 (m)		
4"	86.5	3.97 (m)	87.7	4.16 (m)		
5"	62.1	3.48 (d, 4.0)	62.1	3.66 (d, 4.0)		
2"-ОН		4.61 (d, 8.4)				
3"-ОН		4.85 (d, 5.2)				
5" - OH		4.78 (t, 5.2)				

Table S1. ¹H and ¹³C NMR data of 1 and 2.

^{*a*} In DMSO-*d*₆ at 400 MHz. ^{*b*} In acetone-*d*₆ at 500 MHz. ^{*c*} In acetone-*d*₆ at 400 MHz.

position	3		4		5	
	$\delta_{ m C}$	$\delta_{ m H}$ (mult. J)	$\delta_{ m C}$	$\delta_{ m H}$ (mult. J)	$\delta_{ m H}$ (mult. J)	
1	167.1					
2			171.9			
3	156.6		108.7	6.13 (s)	6.16 (s)	
4	106.6	6.52 (s)	183.3			
5	104.3	6.67 (d, 2.0)	162.4		6.16 (s)	
6	165.5		100.8	6.47 (d, 2.0)		
7	103.3	6.63 (d, 2.0)	164.0			
8	163.8		95.7	6.67 (d, 2.0)	3.07 (t, 7.2)	
9	101.1		158.6		1.68 (qt, 7.2)	
10	140.6		106.3		0.96 (t, 7.2)	
11	43.7	2.60 (dd, 7.2, 14.4)	36.4	2.66 (t, 7.6)		
		2.64 (dd, 5.6, 14.4)				
12	65.5	4.18 (m)	20.8	1.79 (qt, 7.6)		
13	23.5	1.24 (d, 7.0)	13.7	1.01 (t, 7.6)		
1'	101.3	5.90(1.4.4)	101.5	5.78 (d, 4.4)	5.67 (d, 4.4)	
		5.80 (d, 4.4)				
2'	73.0	4.24 (dd, 4.8, 7.0)	73.1	4.29 (m)	4.22 (m)	
3'	70.7	4.17 (m)	70.7	4.17 (m)	4.12 (m)	
4'	88.3	4.18 (m)	88.3	4.19 (m)	4.13 (m)	
5'	62.8	3.68 (dd, 3.6, 12.0)	62.9	3.70 (dd, 3.6, 12.0)	3.68 (dd, 3.6, 12.0)	
		3.64 (dd, 3.6, 12.0)		3.66 (dd, 3.6, 12.0)	3.63 (dd, 3.6, 12.0)	

Table S2. ¹H and ¹³C NMR data of 3-5 (400 MHz, acetone- d_6).

Table S3. Primers used in this paper.

Primers for qRT-PCR	
Pgp1F	5'-AGTCTGAAAGTTGCCGAGAT-3'
Pgp1R	5'-CGTAGAACGTGAGTTGGGAG-3'
Pgp2F	5'-TGCTGGCTATGTACCTGACG-3'
Pgp2R	5'-CTAGCATAATTTGGCCGTGA-3'
Pgp3F	5'-CTGGTTAGTGCGACCCTCTG-3'
Pgp3R	5'-CTCTGCTTCCGCCTCTATGT-3'
Pgp4F	5'-GAGTTCATTTCTTCCCTTCC-3'
Pgp4R	5'-TACTGCGATTGTGATTCTGT-3'
Pgp5F	5'-CAGGGCTCTTCAGGGTCGTA-3'

Pgp5R	5'-TGTCGGGAGTAATAGGCACA-3'
Pgp6F	5'-AGTCCCATTCTTACCCTATT-3'
Pgp6R	5'-AACCGTTGTCTCATTTCATT-3'
Pgp7F	5'-ATCCCTGTTATTTCCGAGTC-3'
Pgp7R	5'-CCATCAGAGCCAAAGTAGGT-3'
Pgp8F	5'-TCGGCTGTGAAGCGATTAGA-3'
Pgp8R	5'-TGAGTATCCTCGGGCTGGTT-3'
Pgp9F	5'-GCAGGTGACAGGCTACAAGG-3'
Pgp9R	5'-GCGAAAGATAGACCGAAACG-3'
Pgp10F	5'-CCGTGCGGAGGGAGTGAC-3'
Pgp10R	5'-CGGGACGAGATGGGTAGG-3'
Pgp11F	5'-TCTACTTGCCGACCAT-3'
Pgp11R	5'-CTGCTGACTCAAGGGA-3'
Pgp12F	5'-GTCCATTCCTCCGCTACTTT-3'
Pgp12R	5'-ACTCGGGTATTCACATCCTG-3'
AT1F	5'-TCCTCTGCGAAGCGGAACT-3'
AT1R	5'-CACCCTTTAACGATGGATGAAC-3'
AT2F	5'-TTCGGCGAGCCTCTATTC-3'
AT2R	5'-TCGTCTATCGGCGTGTCC-3'
AT3F	5'-CCGACTGTGCTCTAATCTC-3'
AT3R	5'-CTGGATGCTCCCTGGTAA-3'
AT4F	5'-CGACCACGACCGACTACAA-3'
AT4R	5'-TCACCGCGATTTCCTTCT-3'
AT5F	5'-GGCAAGGCATCCAAAGCT-3'
AT5R	5'-CTCGCCAACCTCCTCCAC-3'
AT6F	5'-CCGCCGTATCAACAAGCC-3'
AT6R	5'-CATCCCAAGAAACGCCTA-3'
PT1F	5'- GCCTTACGGTTCGGGTCT-3'
PT1R	5'- TCAGCCAGTTCGCTTGTG-3'

PT2F	5'-AGAGTCGAGCGCCTATCT-3'
PT2R	5'-GCAAGGTTCTCCCTAATCC-3'
PT3F	5'-CCTGCTAAACAACGAACTAC-3'
PT3R	5'-CTTCCTTCCAACGACCAC-3'
PT4F	5'-TACCTGACTTCCCTATTCCC-3'
PT4R	5'-GCTTCCAGACCCACTATGA-3'
PT5F	5'-CGAATGGTTTATGGGTATT-3'
PT5R	5'-TTGAGGCGGTATGTTTGG-3'
PT6F	5'-AAAGCCCATCGCTACTGT-3'
PT6R	5'-TCAGCCCTTCCTCAACAA-3'
PT7F	5'-TTTACCTGGCTCTATGGG-3'
PT7R	5'-CTCGCTGTCGCTATCTGT-3'
PT8F	5'-ACCTATTGGAGGGTGCTG-3'
PT8R	5'-TGGTCGTATCCCGTTATT-3'
PT9F	5'-CCCCAACATCCCTATTCA-3'
PT9R	5'-ATGCGCTTACCAACCAAG-3'
PT10F	5'-CACAGCCGTGCTTCCATT-3'
PT10R	5'-CTCGCAAGGTCGGTCTCC-3'
18sF	5'-GTCCGAATAACCGAAGCG-3'
18sR	5'-GCCAGCGTACTGCCAAAG-3'
Actin1F	5'-GCCTACCACGATGTTCAA-3'
Actin1R	5'-ATAATGCCGAAGCGAAAG-3'
Actin2F	5'-CAGACGCTATCAACAGGA-3'
Actin2R	5'-CTCAAACCAGCAAGAATG-3'

Pgp3-sp1	5'-CAGGCTTACGGACACCAT-3'
Pgp3-sp2	5'-GCTCCTTCAATATCATCTTCTGCGAAAGGCAAACACCAAT -3'
Pgp3-sp3	5'-ATTGGTGTTTGCCTTTCGCAGAAGATGATATTGAAGGAGC-3'
Pgp3-sp4	5'-GCTCCATACAAGCCAACCAC-3'

Pgp3-sp5	5'- CCTTCCTCCCTTTATTTCAGA-3'
Pgp3-sp6	5'-GGCTGAGGATCTCGGAAGGGATCCTCTAGAAAGAAGGATTAC-3'
Pgp3-sp7	5'-GTAATCCTTCTTTCTAGAGGATCCCTTCCGAGATCCTCAGCC-3'
Pgp3-sp8	5'-GCGAGGTGCCGTATTCTA-3'
Pgp6-sp1	5'-CCGTGATACGTTCGTGGTA-3'
Pgp6-sp2	5'-GCTCCTTCAATATCATCTTCTGCAACCCTGGATTGAAGTG-3'
Pgp6-sp3	5'-CACTTCAATCCAGGGTTGCAGAAGATGATATTGAAGGAGC-3'
Pgp6-sp4	5'-GCTCCATACAAGCCAACCAC-3'
Pgp6-sp5	5'-CCTTCCTCCCTTTATTTCAGA-3'
Pgp6-sp6	5'-CCTATCAACGGCACTTCAGGATCCTCTAGAAAGAAGGATTAC-3'
Pgp6-sp7	5'-GTAATCCTTCTTTCTAGAGGATCCTGAAGTGCCGTTGATAGG-3'
Pgp6-sp8	5'-TTTGGACTCGCATGATAT-3'
Pgp7-sp1	5'-TGATGCCTAAATGGGACT-3'
Pgp7-sp2	5'-GCTCCTTCAATATCATCTTCTGGAACAAGGAGCCAGAATA-3'
Pgp7-sp3	5'-TATTCTGGCTCCTTGTTCCAGAAGATGATATTGAAGGAGC-3'
Pgp7-sp4	5'-GCTCCATACAAGCCAACCAC-3'
Pgp7-sp5	5'-CCTTCCTCCCTTTATTTCAGA-3'
Pgp7-sp6	5'-GAGCAAGCAGCGAGGACAGGATCCTCTAGAAAGAAGGATTAC-3'
Pgp7-sp7	5'-GTAATCCTTCTTTCTAGAGGATCCTGTCCTCGCTGCTTGCT
Pgp7-sp8	5'-CATGCCATGCGTCTGTCT-3'
Pgp11-sp1	5'-CGGCTCGTTTATTCGTCC-3'
Pgp11-sp2	5'-GCTCCTTCAATATCATCTTCTGCAGGGCTCGCAATCAGTC-3'
Pgp11-sp3	5'-GACTGATTGCGAGCCCTGCAGAAGATGATATTGAAGGAGC-3'
Pgp11-sp4	5'-GCTCCATACAAGCCAACCAC-3'
Pgp11-sp5	5'-CCTTCCTCCCTTTATTTCAGA-3'
Pgp11-sp6	5'-CTCCACGCCCACCACTTCTTGGATCCTCTAGAAAGAAGGATTAC-3'
Pgp11-sp7	5'-GTAATCCTTCTTTCTAGAGGATCCAAGAAGTGGTGGGGCGTGGAG-3'
Pgp11-sp8	5'-TGGGCGGTCTTCCTTTCG-3'

Primers for diagnostic PCR of deleted pgp genes

Pgp3-inF	5'-GAAAGGAGCCACAAAGCG-3'
Pgp3-inR	5'-CTGCGGAAGTTCCACGAT-3'
Pgp6-inF	5'-CGCCGAGATCAGATGTTT-3'
Pgp6-inR	5'-ATTCAGTGGCACGGTTTT-3'
Pgp7-inF	5'-GCAACTGTACCTTCTCCCTT-3'
Pgp7-inR	5'-ATGCGTGCTGCTTGATGT-3'
Pgp11-inF	5'-GCAGCATTGGAAGTGAGC-3'
Pgp11-inR	5'-AAACGAGGAAGAGGTAAGG-3'

 Table S4.
 Gene informations of ABC transporters in phylogenetic analysis.

Proposed name	Subfamily	Genome locus	Species	Genbank no.
NcABCE1	ABC-E	NCU03061	Neurospora crassa	EAA34633.2
			OR74A	
AoABCE1	ABC-E	AO090038000399	Aspergillus oryzae	BAE64192.1
			RIB40	
CcABCE1	ABC-E	CC1G_07665	Coprinopsis cinerea	EAU89439.2
			okayama7*130	
PcABCE1	ABC-E	Pc16g04800	Penicillium	CAP93150
			chrysogenum Wisconsin	
			54-1255	
AfuABCA1	ABC-A	Afu5g09480	Aspergillus fumigatus	EAL91653
			Af293	
NcABCA1	ABC-A	NCU04021	Neurospora crassa	EAA28400.1
			OR74A	
BfABCA1	ABC-A	BC1G_11159	Botryotinia fuckeliana	EDN32616
			B05.10	
PnABCB1	ABC-B	SNOG_00742	Phaeosphaeria nodorum	EAT92237.1
	$(FL)^{\alpha}$		SN15	
PnABCB2	ABC-B	SNOG_02135	Phaeosphaeria nodorum	EAT90347.2

	(<u> </u>			
	(FL) ^{<i>a</i>}		SN15	
NcABCB1	ABC-B	NCU06011	Neurospora crassa	EAA29583.1
	$(FL)^{\alpha}$		OR74A	
AoABCB1	ABC-B	AO090001000021	Aspergillus oryzae	BAE56585.1
	$(FL)^{\alpha}$		RIB40	
CcABCB3	ABC-B	CC1G_04855	Coprinopsis cinerea	EAU80745.2
	$(FL)^{\alpha}$		okayama 7*130	
CaABCB1	ABC-B	CaO19.7440	Candida albicans	EAK97097.1
	$(FL)^{\alpha}$		SC5314	
AfuABCB15	ABC-B	Afu6g12870	Aspergillus fumigatus	EAL89127.1
	$(HT)^{\beta}$		Af293	
PnABCB14	ABC-B	SNOG_15856	Phaeosphaeria nodorum	EAT76694.2
	$(HT)^{\beta}$		SN15	
SsABCB8	ABC-B	SS1G_03201	Sclerotinia sclerotiorum	EDO00728.1
	$(HT)^{\beta}$		1980_UF-70	
NcABCB6	ABC-B	NCU00010	Neurospora crassa	EAA27761.2
	$(HT)^{\beta}$		OR74A	
SsABCC3	ABC-C	SS1G_05336	Sclerotinia sclerotiorum	EDO02859.1
			1980 UF-70	
AfuABCC1	ABC-C	Afu1g10390	Aspergillus fumigatus	EAL90367.2
			Af293	
CaABCC2	ABC-C	CaO19.5100	Candida albicans	EAK98674.1
			SC5314	
NcABCC2	ABC-C	NCU03591	Neurospora crassa	EAA31399.1
			OR74A	
NcABCD1	ABC-D	NCU01751	Neurospora crassa	EAA27938.1
			OR74A	
PcABCD1	ABC-D	Pc13g11640	Penicillium	CAP92233.1
			chrysogenum Wisconsin	

			54-1255	
CnABCD1	ABC-D	CNA06310	Cryptococcus	AAW41159.1
			neoformans var.	
			neoformans JEC21	
AfuABCD1	ABC-D	Afu1g04780	Aspergillus fumigatus	EAL88189.1
			Af293	
CaABCF1	ABC-F	CaO19.2183	Candida albicans	EAK97015.1
			SC5314	
NcABCF1	ABC-F	NCU04051	Neurospora crassa	EAA28430.1
			OR74A	
AfuABCF1	ABC-F	Afu1g16440	Aspergillus fumigatus	EAL90972.1
			Af293	
PcABCF1	ABC-F	Pc12g06650	Penicillium	CAP80292.1
			chrysogenum Wisconsin	
			54-1255	
CaABCG7	ABC-G	CaO19.5958	Candida albicans	EAL04461.1
			SC5314	
AfuABCG1	ABC-G	Afu1g14330	Aspergillus fumigatus	EAL90765.1
			Af293	
CnABCG1	ABC-G	CNA07090	Cryptococcus	AAW41207.1
			neoformans var.	
			neoformans JEC21	
PcABCG1	ABC-G	Pc12g00190	Penicillium	CAP79646.1
			chrysogenum Wisconsin	
			54-1255	

 $^{\alpha}$ Full-size ABC-B protein. $^{\beta}$ Half-size ABC-B protein.

NMR Spectra

¹H NMR spectrum of **1**.

¹³C NMR spectrum of **1**.

¹H-¹H COSY spectrum of **1**.

HMQC spectrum of 1.

NOESY spectrum of 1.

¹³C NMR spectrum of **2**.

HMQC spectrum of 2.

HMBC spectrum of **2**.

NOESY spectrum of **2**.

¹H NMR spectrum of **3**.

DEPT 135 spectrum of 3.

HMQC spectrum of **3**.

HMBC spectrum of **3**.

NOESY spectrum of **3**.

HMBC spectrum of 4.

S27

7.0

6.5

5.5

6.0

5.0

4.5

4.0 3.5 f2 (ppm)

3.0

2.5

2. 0

1.5

1.0

0.5

NOE spectrum of 4.

