Supplementary Information

TiO₂-pillared Clays with Well-ordered Porous Structure and Excellent their Photocatalytic Activity

Jae-Hun Yang,^a Huiyan Piao,^a Ajayan Vinu,^b Ahmed A.Elzatahry,^{c,e} Seung-Min Paek,^d Jin-Ho Choy^{*,a,b,c}

^aCenter for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea. Email: jhchoy@ewha.ac.kr ^bAustralian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4073, QLD, Australia.

^cDepartment of Chemistry, King Saud University, B.O. BOX.2455, Riaydh 11451, Saudi Arabia. ^dDepartment of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Taegu 702-701, Republic of Korea.

^dDepartment of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Taegu 702-701, Republic of Korea.

^eDepartment of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University P.O. Box 2713, Doha, Qatar

Experimental

Materials

The synthetic Na-fluoromica (denoted as Na-mica) with a chemical formula of $Na_{0.7}Mg_{2.65}Si_4O_{10}F_2$ and the natural Namontmorillonite (Kunipia-G) with a chemical formula of $Na_{0.35}K_{0.01}Ca_{0.02}(Si_{3.89}Al_{0.11})(Al_{1.60}Mg_{0.32}Fe_{0.08})O_{10}(OH)_2$ were purchased from CO-OP Chemical Co. Ltd. and Kunimine Industries Co. Ltd., respectively, and used as the host for pillaring TiO₂ nanoparticles without any purification. Magnesium chloride hexahydrate (MgCl₂·6H₂O, 98%), iron(II) chloride (FeCl₂, 98%), and titanium tetraisopropoxide (97%, Ti(OCH(CH₃)₂)₄) were purchased from Sigma-Aldrich. Hydrochloric acid was purchased from Daejung Chemical and Metals. All the chemicals were used without any further purification.

Synthesis of Materials

Clays with different optical transparency. Based on the Hoffman-Klemen effect, optical transparency and cation exchange capacity of the pristine clay were carefully controlled. Briefly, 5 g of Na-mica dispersed in 400 mL of deionized water was mixed with 0.5 mmol of MgCl₂ and FeCl₂, respectively, and each suspension was stirred at room temperature for 20 h. The partially exchanged Na-mica with Mg^{2+} or Fe²⁺ was separated by the centrifugation and thoroughly washed with deionized water until chloride ions in the supernatant were not be detected. Thus, the as-prepared samples were freeze-dried and finally calcined at 550 °C for 4 h in order to fix the Mg^{2+} or Fe²⁺ ions into the vacant octahedral sites in-plane of the clay lattice. The resulting samples with different transparency were denoted as MgM and FeM, respectively. The cationic exchange capacities of the as-prepared MgM and FeM and the pristine clays, Na-mica and Kunipia-G, were evaluated by the methylene blue method.^{s1}

Clays with different porosity. TiO_2 -pillared clays were synthesized via ion-exchange reaction and subsequent calcination (pillaring) as described previously by Yamanaka *et al.*^{s2} At first, 2 g of each clay with different transparency (Na-mica, MgM, FeM and Kunipia-G) was dispersed in 200 mL deionized water and swelled for 12 h prior to ion-exchange reaction. We prepared TiO₂ oligomeric cations via the acid catalyzed hydrolysis based on Yamanaka's, ^{S2} where titanium isopropoxide was hydrolyzed and peptized with 1 N HCl (aq) to form the oligomeric cations (TiO₂ nanosol). The most important synthetic parameter for preparing TiO₂ nanosol with homogeneous size and charge was the ratio of HCl/Ti, which should be not less than 2. Under this condition, the hydrolyzed white slurry was transformed into a clear sol within 1 hour. In this study, titanium tetraisopropoxide was dropwisely added into 1 M HCl solution with HCl/Ti molar ratio of 2 and peptized at room temperature for 1 h and filtered with 0.2 µm PTEF membrane filter. The resulting TiO₂ nanosol was slowly added to 1 wt% aqueous suspension of clays with Ti/CEC ratio of 40, and ion-exchange reaction was carried out at 50 °C for 3 h. The resulting products were separated by centrifugation and washed with deionized water several times to remove the excess TiO₂ sol particles and chloride ions. The resulting TiO₂-pillared MgM, TiO₂-pillared FeM, and TiO₂-pillared Kunipia-G with different porosity were freeze-dried and calcined in the temperature range of 100–800 °C for 3 h (hereafter denoted as TM-X, TMgM-X, TFeM-X, and TK-X, where X is the calcination temperature).

Characterization

X-ray diffraction (XRD) patterns for all the samples were recorded using a Rigaku RINT-Ultima III diffractometer equipped with Ni-filtered Cu-K α radiation ($\lambda = 1.5405$ Å) operated at 40 kV and 30 mA. The diffuse reflectance UV-vis spectra were measured using a Jasco V-550 spectrophotometer equipped with an integrating sphere by using BaSO₄ plate as the baseline. Transmission electron microscopy (TEM) images were obtained using a JEOL JEM-2100F HRTEM at an accelerating voltage of 200 kV. Cross-sectioned samples for the TEM analysis were prepared using a RMC Ultramicrotome (PowerTome PC), in which sectioning was conducted at RT with the thickness of 80 nm and speed of 0.5 mm/min. N₂ adsorptiondesorption isotherms were volumetrically measured at liquid nitrogen temperature (77 K) using a Belsorp-Mini II (Bel Japan, Inc.). All the samples were degassed at 200 °C for 3 h under vacuum (< 10^{-2} torr) prior to the measurement. The chemical compositions were determined by measuring the X-ray fluorescence spectra for the pellet samples using a ZSX Primus II (wavelength dispersive type XRF instrument, Rigaku). The chemical analysis results were listed in Table S1 of the supporting information (ESI[†]). X-ray absorption spectroscopic (XAS) experiments at the Ti K-edge were performed using an X-ray absorption fine structure (XAFS) facility installed at beam line 10C in Pohang Accelerator Laboratory (PAL), Korea. XAS data were collected at room temperature in the transmission mode using gas-ionization detectors. All the spectra of Ti K-edge were calibrated by measuring the spectrum of Ti metal foil, simultaneously together with those of the samples. A Si(111) double crystal monochromator (DCM) was employed to monochromatize the X-ray photon energy. A step size of 0.2 eV in the X-ray absorption near edge structure (XANES) region was used to accurately collect XANES spectra. Data analyses for the experimental spectra were carried out by the standard procedure as reported previously.^{s3} On the other hand, the extended X-ray absorption fine structure (EXAFS) analyses were also conducted by using the UWXAFS 2.0 code.^{s4}

Photocatalytic activity test

Photocatalytic activity for all the samples was evaluated by the photodecomposition of methyl orange (MO) in a solution under UV light. Briefly, 30 mg of the samples were dispersed in 30 mL of an aqueous solution (5×10^{-5} M) of MO contained in a Pyrex glass vessel and the suspension was stirred for 30 min in the dark. 300 W Xe arc lamp was used and equipped with water filter to remove the infrared irradiation. The integrated light intensity between 290 nm and 800 nm was ~0.1 W/cm². The concentration of MO was determined by monitoring the absorbance at 464 nm (λ_{max} of MO) using a Perkin-Elmer Lamda 35 spectrophotometer.

References

- S1 G. Kahr and F.T. Madsen, Appl. Clay Sci., 1995, 9, 327-336.
- S2 (a) S. Yamanaka, T. Nishihara and M. Hattori, *Mater. Chem. Phys.*, 1987, 17, 87; (b) S. Yamanaka and K. C. Makita, *J. Porous Mater.*, 1995, 1, 29.
- S3 J. H. Park, J. H. Yang, J. B. Yoon, S. J. Hwang and J. H. Choy, J. Phys. Chem. B, 2006, 110, 1592-1598.
- S4 S. M. Paek, H. Jung, M. Park, J. K. Lee and J. H. Choy, Chem. Mater., 2005, 17, 3492-3498.

Samples	Chemical composition (wt%)						
	Na ₂ O	MgO	Al ₂ O ₃	SiO ₂	Fe ₂ O ₃	TiO ₂	
Kunipia-G	2.67	2.53	24.96	67.00	2.85	-	
Na-Mica	4.36	23.40	-	70.62	-	-	
MgM	3.30	24.84	-	71.12	-	-	
FeM	3.67	24.30	-	70.64	1.28	-	
TM-500	1.32	16.22	-	46.73	-	34.96	
TMgM-500	1.12	17.76	-	48.99	-	31.93	
TFeM-500	1.46	16.72	-	48.30	0.63	32.28	
TK-500	-	1.24	11.18	29.26	1.16	56.90	

Table S1. Chemical composition of TiO_2 -pillared clays and host clays obtained by XRF (x-rayfluorescence) analysis.

Samples	$S_{BET} \left(m^2/g ight)$	$V_{tot}(ml/g)$	V _{micro} (ml/g)
Na-Mica	9	0.03	-
Kunipia-G	5	0.01	-
TM-500	242 (0.999)	0.21	0.10
TK-500	314 (0.999)	0.25	0.14
TFeM-500	347 (0.997)	0.27	0.15
TMgM-300	299 (0.998)	0.25	0.12
TMgM-400	376 (0.997)	0.30	0.16
TMgM-500	335 (0.997)	0.29	0.15
TMgM-600	266 (0.998)	0.26	0.11.
TMgM-700	250 (0.999)	0.26	0.10
TMgM-800	16 (1.000)	0.10	-

Table S2. Porous texture of TiO_2 pillared layered silicates and host layered silicates.

 $*S_{BET}$: BET specific surface area, V_{tot} : total volume, V_{micro} : micropore volume calculated by t-plot. The value in () is a correlation factor of BET equation.

Samples	Bond	CN	R	ΔE_0	σ^2
Anatase TiO ₂	Ti–O	6.0	1.95	0.51	4.9
	Ti-Ti _{edge}	4.0	3.04	-0.47	5.1
	Ti-Ti _{corner}	4.0	3.79	1.12	6.3
TM-500	Ti-O	5.6	1.96	4.42	6.1
	Ti-Ti _{edge}	2.4	3.05	3.08	6.8
	Ti-Ti _{corner}	2.6	3.84	3.28	7.8
TMgM-500	Ti-O	5.7	1.98	4.91	6.9
	Ti–Ti _{edge}	3.0	3.07	-0.38	9.9
	Ti-Ti _{corner}	2.9	3.85	1.47	10.3
TFeM-500	Ti-O	5.5	1.97	4.78	6.8
	Ti-Ti _{edge}	2.9	3.03	0.30	9.1
	Ti–Ti _{corner}	3.0	3.80	2.71	8.4

Table S3. Results of nonlinear least-squares curve-fitting analysis for the Ti K-edge EXAFS spectra of TiO₂-Pillared clays and anatase TiO₂.

*The fitting range for *k* is 2.62-12.90 Å⁻¹, and that for *R* is 1.00-3.85 Å. Errors in *CN* (coordination number) and σ^2 (Debye-Waller factor, 10⁻³ Å²) are 20%, and those in *R* (interatomic distance) and ΔE_0 (threshold energy difference) are 0.02 Å and 2.0 eV, respectively.

Scheme S1. (A) Structure of Na-mica and modified micas (FeM and MgM), (B) UV-vis spectra of Namica, modified micas and Kunipia-F (natural montmorillonites), (C) their schematic TiO₂ pillared structures and (D) time-dependent curves of the concentration of methyl orange (MO) upon photocatalytic degradation reaction under UV irradiation ($\lambda > 290$ nm) with and without TiO₂ pillared clays.

Fig. S1.

Fig. S1 X-ray diffraction patterns of (a) Na-mica, (b) Mg²⁺ modified Na-mica (MgM), (c) Fe²⁺ modified Na-mica (FeM), (d) ethylene glycol (EG) intercalated MgM and (e) EG intercalated FeM.

•

Fig. S2 Wide angle X-ray diffraction patterns of (a) Na-mica, (b) TM-500, (c) TMgM-500 and (d) TFeM-500.