Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

1 Electronic supplementary information

2 Bismuth oxide nanoparticle as a nanoscale guide to form silver-polydopamine
3 hybrid electrocatalyst with enhanced activity and stability for oxygen reduction

- 4 reaction
- 5 Settu Murali, Jen-Lin Chang and Jyh-Myng Zen*
- 6 Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan.
- 7 *E-mail: jmzen@dragon.nchu.edu.tw,* Tel/Fax: +886 4 22850864, +886 4 22854007.
- 8
- 9
- 10 Dopamine polymerization was clearly verified based on the color-changing reaction
- 11 of Bi₂O₃ from yellow to dark black during composite formation in reaction mixture within 4
- 12 hours.

- 13
- 14 Figure S1: Schematic representation of the Ag-PDA@Bi₂O₃ preparation
- 15
- 16
- 17 1.1 Synthesis of Ag-PDA

Dopamine (100 mg) was dissolved in 10 mM Tris-HCl (pH 8.5) solution under continuous stirring for 12 h. The obtained suspension was centrifuged, washed with DD water and dried at 60°C. After that, 5 mg of PDA powder was dispersed in water with 10 min sonication and 2 mM AgNO₃ was added into this solution with 2 h stirring. Then the solution was centrifuged, washed with distilled water and dried at 60°C for further characterization.

24

25 1.2 Synthesis of Ag-Bi₂O₃

Bi₂O₃ nanoparticle (5 mg) was dispersed in water with 10 min sonication and 2 mM AgNO₃ was added into this solution with 2 h stirring. Then the solution was centrifuged, washed with distilled water and dried at 60° C for further characterization.

29

31 Bi₂O₃ (b)

- 33
- 34
- 35

37

38 Figure S3: HR-TEM images of Ag-PDA@Bi₂O₃.

47	Table S1: Different particle size	variation of Ag on $PDA@Bi_2O_3$ in HR-TEM im	nage
----	-----------------------------------	---	------

No of Particle	Particle size / nm	No of Particle	Particle size / nm				
1	57.11	7	31.27				
2	39.57	8	27.90				
3	42.92	9	45.72				
4	17.65	10	21.21				
5	34.43	11	36.38				
6	32.88	12	27.75				
Maximum/nm: 57.11							
Minimum/nm: 17.65							
Mean/nm: 34.59							

51 Figure S4: EDX spectrum of $Ag-Bi_2O_3$ (a) and $Ag-PDA@Bi_2O_3$ (b)

63 2. Oxygen reduction reaction:

 $i_P = 0.4463 nFAC \left(\frac{nFvD}{RT}\right)^{\frac{1}{2}}$

64 Electroactive surface area of the modified electrode surface was calculated from the65 Randles-Sevcik equation:

67 where i_p is the current maximum (amps), n is the number of electrons transferred in the 68 redox event, A is electrode Area (cm²), F is the Faraday constant (C mol⁻¹), D is the diffusion 69 coefficient (cm²/s), C is the concentration of redox solution, v is the scan rate (V/s). 70 Potassium ferricyanide solution (5 mM) was used as a redox probe (Fe³⁺/ Fe²⁺) for 71 calculating electroactive area. Figure S2 shows cyclic voltammetry of ferricyanide redox 72 peak in 0.1 M KNO₃ at a scan rate of 50 mV/s. The redox current was used to evaluate the 73 electroactive surface area.

75 Figure S5: Cyclic voltammetry of ferricyanide redox peak in 0.1M KNO₃ solution

Levich equation				Koutecky-Levich equation					
Pt dis	sk (Area	= 0.	0614 cm ² ,	Applied po	tential = -	-0.38 V)			
ω	i		j	ω	ω^(1/2)	1/j	1/B	1/ω^(1	1/jk
(rpm))			(rad/s)				/2)	
150	0.31	9	4.6366	15.7079	3.963	0.1925		0.2523	0.024
200	0.36	1	5.2470	20.9439	4.576	0.1701		0.2185	
250	0.39	6	5.7558	26.1799	5.116	0.1551		0.1954	
300	0.42	4	6.1627	31.4159	5.604	0.1448	0.6554	0.1784	
500	0.52	6	7.6453	52.3598	7.235	0.1167		0.1382	
750	0.62	3	9.0552	78.5398	8.86	0.0986		0.1129	
1000	0.68	7	9.9854	104.719	10.23	0.0894		0.0978	
Au di	sk (Area	= 0	.0588 cm ²	, Applied p	otential =	-0.38 V)	1	1	1
150	0.15		2.5510	15.7079	3.963	0.3920		0.2523	0.093
200	0.16	5	2.8061	20.9439	4.576	0.3564		0.2185	
250	0.18		3.0612	26.1799	5.116	0.3267		0.1954	
300	0.19	2	3.2653	31.4159	5.604	0.3063	1.176	0.1784	
500	0.22	7	3.8605	52.3598	7.235	0.2590		0.1382	
750	0.26	1	4.4387	78.5398	8.86	0.2253		0.1129	
1000	0.28	8	4.8979	104.719	10.23	0.2042		0.0978	
GC di	sk (Area	= 0	.0389 cm ²	, Applied p	otential =	-0.9 V)	1	1	I
150	0.13	4	3.4447	15.7079	3.963	0.2903		0.2523	
200	0.14	8	3.8046	20.9439	4.576	0.2628		0.2185	0.091
250	0.15	9	4.0874	26.1799	5.116	0.2447		0.1954	
300	0.16	7	4.2930	31.4159	5.604	0.2329	0.7944	0.1784	
500	0.19	8	5.0899	52.3598	7.235	0.1965	-	0.1382	
750	0.22	2	5.7069	78.5398	8.86	0.1752		0.1129	-
1000	0.22	9	5.8868	104.719	10.23	0.1699	-	0.0978	
GC+C	atalyst (Are	a = 0.0408	37 cm ² , App	lied poter	-0.3	38 V)	•	
150	0.179	4	.3797	15.7079	3.963	0.2283		0.2523	
200	0.197	4	.8202	20.9439	4.576	0.2075		0.2185	
250	0.211	5	.1627	26.1799	5.116	0.1937	0.637	0.1954	- 0.055
300	0.227	5	.5541	31.4159	5.604	0.1800		0.1784	
500	0.27	6	.6063	52.3598	7.235	0.1514		0.1382	
750	0.309	7	.5752	78.5398	8.86	0.1320	1	0.1129	
100		1				0.1209	1	0.0070	1
0	0.338	8	.2701	104.719	10.23			0.09/8	

76	Table S2: Kouteck	y-Levich	plot values	calculation	for ORR.
			1		

83 Figure S6: K-L Plots from Figure 4C RDE diffusion curve of different electrode potentials.

- 86 Figure S7: Picture of the Flow Injection Analysis system for H₂O₂ monitoring. (a) Flow cell
- 87 setup and working principle. (b) H₂O₂ monitoring in ORR at Ring and Disk electrode.

Figure S8: Calibration curve for dissolved Oxygen determination by Linear Sweep Voltammetry (a) (O_2 concentration from black to green is 0.84, 1.34, 2.02, 2.69, 3.36, 4.03, 4.70. 5.38, 6.05, 6.72, 7.39 mg/L) and linear range for dissolved oxygen (b). CV stability of at after 1000, 2000, 2500 cycle in O_2 saturated solution, scan rate 200 mV/s (c). Long time stability CV in dissolved oxygen medium at different days, scan rate 20 mV/s (d).