Supporting Information

A convenient, highly selective and eco-friendly N-Boc protection of pyrimidines under microwave irradiation

Maxime Bessières, Vincent Roy, Luigi A. Agrofoglio*

ICOA UMR CNRS 7311, Université d'Orléans, Orléans, France.

luigi.agrofoglio@univ-orleans.fr

General	S1
Synthesis and characterization of compounds	S2
NMR spectra	S 6

General :

All commercially available chemicals were of reagent grade and used as received. The reactions were monitored by thin layer chromatography (TLC) analysis using silica gel plates (Kieselgel 60F254, E. Merck). Column chromatography was carried out on Silica Gel 60 M (0.040e0.063 mm, E. Merck). The ¹H, ¹³C and ³¹P NMR spectra were recorded on a Varian InovaUnity 400 spectrometer (400 MHz) in CDCl₃, shift values in parts per million relative to SiMe₄ as internal reference. High Resolution Mass spectra were performed on a Bruker maXis mass spectrometer. Sonication was performed on an Elmasonic P30H ultrasonic instrument with a frequency of 80 kHz and an effective power of 100 W. Microwave irradiations were performed in sealed vessels placed in a Biotage Initiator system using a standard absorbance level (300 W maximum power)

Synthesis and characterisation of compounds:

General procedure 1

To a solution of C5-substituted uracil (300 mg) in DEM (20 mL) were added Boc_2O (3 eq.) and DMAP (0.35 eq.). After microwave at 70°C during 5 minutes, the solution is evaporated under reduced pressure and the N1,N3-bis-

boc-uracil is used in the next step without further purification. The crude was then diluted in 5 mL of DEM/EtOH (9/1) with SiO₂ 60% w/w under microwaves irradiation until the completion of the reaction. After evaporation of all the volatiles, the resulting N3-substituted uracil was purified by flash chromatography (ethyl acetate) to afford pure products as white solids.

tert-butyl-2,4-dioxopyrimidine-3-carboxylate (5)

¹H NMR (400 MHz, CDCl₃) δ 9.12 (s, 1H), 7.20 (dd, *J* = 7.8, 5.6 Hz, 1H), 5.76 (d, *J* = 7.8Hz, 1H), 1.60 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 160.84, 150.52, 147.52, 139.82, 102.18, 87.15, 27.49. HRMS calculated for C₉H₁₂N₂O₄ 212.0797, found 212.0791.

tert-butyl-5-methyl-2,4-dioxopyrimidine-3-carboxylate (6)

¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 7.06 (d, *J* = 1.1 Hz, 1H), 1.91 (d, *J* = 1.1 Hz, 3H), 1.59 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 161.90, 150.80, 147.91, 136.10, 110.47, 86.97, 27.46, 12.27. HRMS calculated for C₁₀H₁₄N₂O₄ 226.0954, found 226.0953.

tert-butyl-5-fluoro-2,4-dioxopyrimidine-3-carboxylate (8a)

¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 4.6 Hz, 1H), 1.61 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 149.91 (d, J = 23.2Hz), 149.10, 146.35, 140.50 (d, J = 232.22Hz), 124.11 (d, J = 33.1 Hz), 88.09, 27.46. ¹⁹F NMR (376 MHz, CDCl₃) δ -165.17 (d, J = 4.6Hz). HRMS calculated for C₉H₁₂N₂O₄ 230.0703, found 230.0702.

tert-butyl-5-chloro-2,4-dioxopyrimidine-3-carboxylate (8b)

¹H NMR (400 MHz, CDCl₃) δ 7.43 (s, 1H), 1.61 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 156.99, 149.52, 146.52, 136.72, 109.38, 88.02, 27.44. HRMS calculated for C₉H₁₂N₂O₄ 246.0407, found 246.0405.

tert-butyl-5-bromo-2,4-dioxopyrimidine-3-carboxylate (8c)

¹H NMR (400 MHz, CDCl₃) δ 7.59 (s, 1H), 1.63 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 157.10, 149.99, 146.67, 139.76, 96.74, 88.03, 27.44. HRMS calculated for C₉H₁₂N₂O₄ 289.9902, found 289.9896.

5-fluoro-3-tert-butylpyrimidine-2,4-dione (14a)

¹H NMR (400 MHz, CDCl₃) δ 9.32 (s, 1H), 7.10 (d, *J* = 3.8 Hz, 1H), 1.75 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 159.39 (d, *J* = 24.0 Hz), 152.43, 140.85 (d, *J* = 232.5 Hz), 120.57 (d, *J* = 32.4 Hz), 63.84, 29.73. ¹⁹F NMR (376 MHz, CDCl₃) δ -164.03 (d, *J* = 3.8 Hz). HRMS calculated for C₉H₁₂N₂O₄ 186.0805, found 186.0800.

5-chloro-3-tert-butylpyrimidine-2,4-dione (14b)

¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.29 (s, 1H), 1.70 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 161.08, 152.33, 133.89, 109.83, 63.79, 29.68. HRMS calculated for C₉H₁₂N₂O₄ 202.0509, found 212.0500.

5-bromo-3-tert-butylpyrimidine-2,4-dione (14c)

¹H NMR (400 MHz, CDCl₃) δ 10.24 (s, 1H), 7.45 (s, 1H), 1.71 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 161.17, 153.53, 137.35, 97.85, 63.86, 29.73. HRMS calculated for C₉H₁₂N₂O₄ 246.0004, found 246.0001.

General procedure 2

To a DMF (2 mL) solution of the substituted protected uracil (1 eq.) were added ethyl bromoacetate (1 eq.) and K_2CO_3 (1 eq.). The solution was stirred 20h at room temperature, and dissolved in 10 mL of EtOAc and 10 mL of NH₄Cl. The aqueous layer was extracted 3 times with 10 mL of EtOAc, and the organic layer was washed with H₂O (5 x 10 mL), and brine (10 mL). The organic layer was dried over MgSO₄, filtered and evaporated under reduced pressure to afford pure products as colorless oils.

tert-butyl-3-(2-ethoxy-2-oxoethyl)-2,6-dioxopyrimidine-1-carboxylate (11)

¹H NMR (400 MHz, CDCl₃) δ 7.06 (d, J = 8.0 Hz, 1H), 5.74 (d, J = 8.0 Hz, 1H), 4.42 (s, 2H), 4.22 (q, J = 7.2 Hz, 2H), 1.56 (s, 9H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.94, 160.37, 148.94, 147.41, 143.44, 102.30, 86.95, 62.34, 48.73, 27.43, 13.95. HRMS calculated for C₁₃H₁₈N₂O₆ 298.1164, found 298.1165.

tert-butyl-3-(2-ethoxy-2-oxoethyl)-5-methyl-2,6-dioxopyrimidine-1-carboxylate (12)

¹H NMR (400 MHz, CDCl₃) δ 6.95 (s, 1H), 4.42 (s, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.92 (s, 3H), 1.58 (s, 9H), 1.27 (q, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.28, 161.49, 148.98, 147.69, 139.54, 110.86, 86.78, 62.21, 48.69, 27.41, 14.06, 12.35. HRMS calculated for C₁₄H₂₀N₂O₆ 312.1321, found 312.1320.

tert-butyl-5-bromo-3-(2-ethoxy-2-oxoethyl)-2,6-dioxopyrimidine-1-carboxylate

¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 4.47 (s, 2H), 4.26 (q, *J* = 7.2 Hz, 2H), 1.59 (s, 9H), 1.30 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.69, 156.83, 148.26, 146.56, 142.96, 96.57, 87.69, 62.55, 49.01, 27.38, 14.07. HRMS calculated for C₉H₁₂N₂O₄ 376.0270, found 376.0264.

Ethyl-2-(5-bromo-3-tert-butyl-2,4-dioxopyrimidin-1-yl)acetate

¹H NMR (400 MHz, CDCl₃) δ 7.36 (s, 1H), 4.35 (s, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.67 (s, 9H), 1.28 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.32, 160.83, 151.30, 140.64, 97.51, 64.10, 62.14, 50.19, 29.59, 14.08. HRMS calculated for C₉H₁₂N₂O₄ 332.0371, found 332.0366.

N,N-di-tert-butoxycarbonyl-N-2-oxopyrimidin-4-yl (7)

To a DEM (20 mL) solution of cytosine (500 mg) were added Boc_2O (4 eq.) and DMAP (0.35 eq.). After microwave at 70°C for 7 minutes, the solution is concentrated in *vacuo*. The *tris*-boc-cytosine is dissolved in 5 mL of solvent, and stirred under variable conditions until the completion of the reaction. After the evaporation of all the volatiles, the crude product was purified by flash chromatography (eluting ethyl acetate) to afford **7** as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 13.01 (s, 1H), 7.68 (d, *J* = 7.1 Hz, 1H), 7.09 (d, *J* = 7.1 Hz, 1H), 1.53 (s, 18H). ¹³C NMR (101 MHz, CDCl₃) δ 163.67, 158.46, 149.44, 145.61, 96.72, 84.97, 27.71. HRMS calculated for C₁₄H₂₁N₃O₅ 311.1481, found 311.1481.

Figure 8: ¹³C NMR compound **11**

0

(mqq) fi

Figure 14: ¹³C NMR compound 8a

Figure 15: ¹⁹F NMR compound 8a

Figure 17: ¹³C NMR compound 8b

Figure 19: ¹³C NMR compound 8c

Figure 22: ¹⁹F NMR compound 14a

Figure 24: ¹³C NMR compound 14b

Figure 1: ¹³C NMR