Electronic Supplementary Information

Functionalized graphene/C₆₀ nanohybrid for targeting

photothermally enhanced photodynamic therapy

Zhen Hu^{a, b*}, Jun Li^a, Yudong Huang^{a*}, Lei Chen^a, Zhenhui Li^a

 ^a School of Chemical Engineering and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
^b Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford. OX1 3TA, UK

Fig. S1 The UV-vis spectra of the C_{60} in n-hexane.

Fig. S2 The fluorescence absorption and emission spectra of FA-GO-PEG/ C_{60} .

Fig. S3 (a) Photothermal effect of the aqueous dispersion of the FA-GO-PEG/C₆₀ (10 μ g/mL) irradiated with 808 laser (a power density of 2 W/cm²), in which the irradiation lasted for 240 s, and then the laser was shut off. (b) Linear time data versus - ln θ obtained from the cooling period of Fig. S3a. In order to get the hS, a dimensionless driving force temperature, θ is introduced using the maximum system temperature, $\theta = (T - T_{surr}) / (T_{max} - T_{surr})$. Time constant for heat transfer from the system is determined to be $\tau_s = 156$ s.

Fig. S4 Cytotoxicity caused by GO, FA-GO and FA-GO-PEG/C₆₀ in dark. Cell viability was measured by the conventional MTT reduction assay. Data are presented as mean \pm S.D. (n=3).