Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2014

Supplementary Information

Base-mediated direct fluoroalkenylation of 2-phenyl-1,3,4-oxadiazole, benzothiazole and benzoxazole with *gem*-difluoroalkenes

Xuxue Zhang, Yingyin Lin, Juan Zhang, and Song Cao*

Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237, China

*Corresponding author: Tel: +86-21-64253452; fax: +86-21-64252603; E-mail: address: scao@ecust.edu.cn

Table of contents

General experimental procedures	P2
Preparation of 1,1-difluoroalkenes 1a–g and 2-phenyl-1,3,4-oxadiazole 2a	P2
General procedure for synthesis of 3aa–ga	P2
General procedure for synthesis of 3ab–gb	P2
General procedure for synthesis of 3ac-cc , 3gc	Р2
Spectral and analytical data of compounds 3	Р3
References	P7
¹ H, ¹³ C, ¹⁹ F NMR and HRMS (EI) spectra of compounds 3	P8

General experimental procedures

All reagents were of analytical grade, and obtained from commercial suppliers and used without further purification. DMSO and other solvents were dried by standard method prior to use. Melting points were measured in an open capillary using Büchi melting point B-540 apparatus and are uncorrected. ¹H NMR and ¹³C NMR spectra were recorded on a 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C NMR, respectively) using TMS as internal standard. The ¹⁹F NMR spectra were obtained using a 400 spectrometer (376 MHz). CDCl₃ was used as the NMR solvent in all cases. High resolution mass spectra (HRMS) were recorded under electron impact conditions using a MicroMass GCT CA 055 instrument and recorded on a MicroMass LCTTM spectrometer. Silica gel (300–400 mesh size) was used for column chromatography. TLC analysis of reaction mixtures was performed using silica gel plates.

Preparation of 1, 1-difluoroalkenes 1a-g and 2-phenyl-1,3,4-oxadiazole 2a

The 1,1-difluoroalkenes (1a-g) were prepared according to the Hu's reported procedure.¹ The 2-phenyl-1,3,4oxadiazole (2a) was prepared according to the Miura's reported procedure.²

General procedure for synthesis of 3aa-ga

A solution of 1a-g (1.0 mmol) in DMSO (0.2 mL) was added dropwise to a mixture of 2a (584 mg, 4.0 mmol) and a THF solution of KHMDS (4.0 mmol, 4.0 mL, 1.0 M) in DMSO (5 mL) via syringe and then stirred at room temperature for 12 h (monitored by TLC). After the consumption of the 1,1-difluoroalkenes (1a-g), the reaction mixture was quenched with H₂O (20 mL), and subsequently extracted with EtOAc (3 × 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using a hexane/EtOAc (30:1) mixture as eluent to afford the pure target compounds **3aa-ga**.

General procedure for synthesis of 3ab-gb

A solution of 1a-g (1.0 mmol) in DMSO (0.2 mL) was added dropwise to a mixture of 2b (270 mg, 2.0 mmol) and a THF solution of KHMDS (2.0 mmol, 2.0 mL, 1.0 M) in DMSO (5 mL) via syringe and then stirred at room temperature for 2 h (monitored by TLC). After the consumption of the 1,1-difluoroalkenes (1a-g), the reaction mixture was quenched with H₂O (20 mL), and subsequently extracted with EtOAc (3 × 10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using a hexane/EtOAc (30:1) mixture as eluent to afford the pure target compounds 3ab-gb.

General procedure for synthesis of 3ac-cc, 3gc

A solution of **1a–c**, **1g** (1.0 mmol) in DMSO (0.2 mL) was added dropwise to a mixture of **2c** (476 mg, 4.0 mmol) and NaH (96 mg, 4.0 mmol) in DMSO (5 mL) via syringe and then stirred at room temperature for 2 h (monitored by TLC). After the consumption of the 1,1-difluoroalkenes (**1a–c**, **1g**), the reaction mixture was quenched with H₂O (20 mL), and subsequently extracted with EtOAc (3×10 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel using a hexane/EtOAc (30:1) mixture as eluent to afford the pure target compounds **3ac–cc**, **3gc**.

Spectral and analytical data of 3

2-(2,2-Diphenyl-1-fluorovinyl)-5-phenyl-1,3,4-oxadiazole (3aa): White solid. Yield: 75%, mp 157.0–158.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.64–7.62 (m, 2H), 7.54–7.38 (m, 11H), 7.35–7.32 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 159.4 (d, ²*J*_{CF} = 40.1 Hz), 140.5 (d, ¹*J*_{CF} = 248.3 Hz), 136.1 (d, ³*J*_{CF} = 5.0 Hz), 135.6 (d, ⁴*J*_{CF} = 2.7 Hz), 132.0, 130.9 (d, ²*J*_{CF} = 11.0 Hz), 130.2 (d, ³*J*_{CF} = 3.0 Hz), 130.1, 130.0, 129.1, 129.0, 128.7, 128.4, 126.9, 123.2 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –123.0 (s, 1F) ppm; HRMS (EI): calcd for C₂₂H₁₅FN₂O [M–H]⁺: 341.1090, found: 341.1100.

2-(2,2-Di-4-fluorophenyl-1-fluorovinyl)-5-phenyl-1,3,4-oxadiazole (**3ba**): White solid. Yield: 78%, mp 153.7–154.8 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.71–7.69 (m, 2H), 7.53–7.43 (m, 5H), 7.32–7.29 (m, 2H), 7.20–7.08 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 163.2 (d, ¹*J*_{CF} = 247.8 Hz), 162.9 (d, ¹*J*_{CF} = 249.4 Hz), 140.5 (d, ¹*J*_{CF} = 249.0 Hz), 132.2–132.1 (m), 132.1–132.0 (m), 131.8–131.7 (m), 131.6–131.5 (m), 129.1, 128.9 (d, ²*J*_{CF} = 14.6 Hz), 128.8, 128.7 (d, ²*J*_{CF} = 41.1 Hz), 126.9, 123.0, 115.9 (d, ²*J*_{CF} = 21.6 Hz), 115.6 (d, ²*J*_{CF} = 21.5 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –110.7 to –110.8 (m, 1F), –112.0 to –112.1 (m, 1F), –122.2 (s, 1F) ppm; HRMS (EI): calcd for C₂₂H₁₃F₃N₂O [M–H]⁺: 377.0902, found: 377.0919.

2-(2,2-Di-4-chlorophenyl-1-fluorovinyl)-5-phenyl-1,3,4-oxadiazole (**3ca**): White solid. Yield: 78%, mp 129.6–130.6 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (d, J = 7.2 Hz, 2H), 7.53–7.39 (m, 9H), 7.26 (d, J = 8.4 Hz, 2H) ppm; ¹³C NMR(100 MHz, CDCl₃): δ 164.6, 158.8 (d, ² J_{CF} = 39.3 Hz), 140.9 (d, ¹ J_{CF} = 250.6 Hz), 135.4 (d, ⁴ J_{CF} = 1.8 Hz), 135.3, 134.0 (d, ³ J_{CF} = 5.2 Hz), 133.6 (d, ⁴ J_{CF} = 2.9 Hz), 132.2, 131.6 (d, ³ J_{CF} = 3.1 Hz), 131.4, 131.3, 129.2, 128.8, 128.5 (d, ² J_{CF} = 11.5 Hz), 126.9, 122.9 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –121.4 (s, 1F) ppm; HRMS (EI): calcd for C₂₂H₁₃Cl₂FN₂O [M–H]⁺: 409.0311, found: 409.0310.

2-(2,2-Di-3-fluorophenyl-1-fluorovinyl)-5-phenyl-1,3,4-oxadiazole (**3da**): White solid. Yield: 80%, mp 120.2–121.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (s, 1H), 7.59 (s, 1H), 7.44–7.27 (m, 5H), 7.17–6.93 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.7, 162.9 (d, ¹*J*_{CF} = 246.6 Hz), 162.6 (d, ¹*J*_{CF} = 245.0 Hz), 158.7 (d, ²*J*_{CF} = 39.1 Hz), 141.3 (d, ¹*J*_{CF} = 251.7 Hz), 137.4 (dd, ³*J*_{CF} = 8.0 Hz, ³*J*_{CF} = 5.2 Hz), 137.0 (dd, ³*J*_{CF} = 7.9 Hz, ³*J*_{CF} = 2.7 Hz), 132.2, 130.5 (d, ³*J*_{CF} = 8.3 Hz), 130.0 (d, ³*J*_{CF} = 8.2 Hz), 129.1, 126.9, 126.0–125.9 (m), 125.8–125.7 (m), 123.0, 117.3 (dd, ²*J*_{CF} = 22.1 Hz, ⁴*J*_{CF} = 3.4 Hz), 116.9 (d, ²*J*_{CF} = 23.0 Hz), 116.8 (d, ²*J*_{CF} = 23.0 Hz), 116.3 (d,

 ${}^{2}J_{CF} = 21.1$ Hz), 116.1 (d, ${}^{2}J_{CF} = 20.8$ Hz); ¹⁹F NMR (376 MHz, CDCl₃): δ –111.9 to –112.0 (m, 1F), –112.1 to –112.2 (m, 1F), –120.2 (s, 1F); HRMS (EI): calcd for C₂₂H₁₃F₃N₂O [M–H]⁺: 377.0902, found: 377.0900.

2-(2,2-Di-3-(trifluoromethyl)phenyl-1-fluorovinyl)-5-phenyl-1,3,4-oxadiazole (**3ea**): White solid. Yield: 60%, mp 98.7–99.5 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.72 (s, 1H), 7.67–7.40 (m, 11H) ppm; ¹³C NMR (100 Hz, CDCl₃): δ 164.8, 158.4 (d, ²*J*_{CF} = 38.8 Hz), 141.8 (d, ¹*J*_{CF} = 252.4 Hz), 136.0 (d, ³*J*_{CF} = 5.1 Hz), 135.7 (d, ³*J*_{CF} = 2.5 Hz), 133.6 (d, ³*J*_{CF} = 1.3 Hz), 133.1 (d, ³*J*_{CF} = 4.6 Hz), 132.4, 131.6 (q, ²*J*_{CF} = 32.6 Hz), 131.2 (q, ²*J*_{CF} = 32.4 Hz), 129.7, 129.3, 129.1, 127.8 (d, ²*J*_{CF} = 12.3 Hz), 127.0, 126.9, 126.8, 126.6–126.4 (m), 126.2–126.0 (m), 123.7 (q, ¹*J*_{CF} = 270.9 Hz), 123.6 (q, ¹*J*_{CF} = 270.9 Hz), 122.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –62.6 (s, 3F), –62.8 (s, 3F), –119.6 (s, 1F) ppm; HRMS (EI): calcd for C₂₄H₁₃F₇N₂O [M–H]⁺: 477.0838, found: 477.0848.

2-(2,2-Di-4-methylphenyl-1-fluorovinyl)-5-phenyl-1,3,4-oxadiazole (**3fa**): White solid. Yield: 15%, mp 138.9–139.9 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.59 (m, 2H), 7.50–7.45 (m, 1H), 7.41–7.35 (m, 4H), 7.25–7.15 (m, 6H), 2.45 (s, 3H), 2.37 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.3, 159.6 (d, ²*J*_{CF} = 40.2 Hz), 140.1 (d, ¹*J*_{CF} = 247.4 Hz), 139.3, 138.6, 133.2 (d, ³*J*_{CF} = 5.3 Hz), 132.9 (d, ³*J*_{CF} = 3.0 Hz), 131.9, 130.9 (d, ²*J*_{CF} = 10.7 Hz), 130.1 (d, ⁴*J*_{CF} = 1.7 Hz), 130.0 (d, ⁴*J*_{CF} = 2.8 Hz), 129.3, 129.1, 128.9, 126.9, 123.3, 21.4, 21.3 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –123.9 (s, 1F); HRMS (EI): calcd for C₂₄H₁₉FN₂O [M–H]⁺: 369.1403, found: 369.1413.

(*E*/*Z*)-2-(2-(4-Fluorophenyl)-2-phenyl-1-fluorovinyl)-5-phenyl-1,3,4-oxadiazole (3ga): White solid. Yield: 85%. A mixture of *E*- and *Z*-isomers (4:3, the *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃): δ 7.70–7.67 (m, 1H), 7.60–7.58 (m, 1H), 7.51–7.37 (m, 8H), 7.30–7.27 (m, 2H), 7.16–7.12 (m, 1H), 7.10–7.06 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 164.5, 164.4, 163.1 (d, ¹*J*_{CF} = 247.6 Hz), 162.9 (d, ¹*J*_{CF} = 247.4 Hz), 159.3 (d, ²*J*_{CF} = 40.0 Hz), 159.2 (d, ²*J*_{CF} = 39.3 Hz), 140.5 (d, ¹*J*_{CF} = 249.4 Hz), 140.4 (d, ¹*J*_{CF} = 246.9 Hz), 135.9, 135.8, 135.5, 135.4, 132.1–132.0 (m), 131.7–131.6 (m), 130.1 (d, ³*J*_{CF} = 3.0 Hz), 130.0 (d, ³*J*_{CF} = 5.8 Hz), 129.9 (d, ²*J*_{CF} = 13.5 Hz), 129.7 (d, ²*J*_{CF} = 10.9 Hz), 129.3, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 128.4, 126.9, 126.8, 123.2, 123.1, 115.8 (d, ²*J*_{CF} = 21.6 Hz), 115.5 (d, ²*J*_{CF} = 21.6 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –111.0 to –111.1 (m), –112.3 to –112.4 (m), –122.0 (s), –123.2 (s) ppm; HRMS (EI): calcd for C₂₂H₁₄F₂N₂O [M–H]⁺: 359.0996, found: 359.1010.

2-(2,2-Diphenyl-1-fluorovinyl)benzo[*d*]thiazole (3ab): White solid. Yield: 88%, mp 148.2–150.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.4 Hz, 1H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.55–7.46 (m, 6H), 7.42–7.34 (m, 6H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.5 (d, ²*J*_{CF} = 27.7 Hz), 151.6, 148.5 (d, ¹*J*_{CF} = 254.4 Hz), 136.5 (d, ⁴*J*_{CF} = 2.3 Hz), 136.2 (d, ³*J*_{CF} = 6.2 Hz), 135.6 (d, ⁴*J*_{CF} = 1.6 Hz), 131.1 (d, ⁴*J*_{CF} = 3.0 Hz), 130.0 (d, ³*J*_{CF} = 6.3 Hz), 129.4, 129.2 (d, ²*J*_{CF} = 13.9 Hz), 128.6, 128.3, 126.5, 126.0, 123.7, 121.0 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -110.8 (s, 1F); HRMS (EI): calcd for C₂₁H₁₄FNS [M–H]⁺: 330.0753, found: 330.0749.

2-(2,2-Di-4-fluorophenyl-1-fluorovinyl)benzo[*d*]thiazole (3bb): White solid. Yield: 89%, mp 163.0–164.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.49–7.43 (m, 3H), 7.38–7.32 (m, 3H), 7.22–7.17 (m, 2H), 7.10–7.06 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.5 (d, ¹*J*_{CF} = 248.1 Hz), 162.6 (d, ¹*J*_{CF} = 248.6 Hz), 159.0 (d, ²*J*_{CF} = 28.8 Hz), 152.2, 148.7 (d, ¹*J*_{CF} = 253.4 Hz), 135.6 (d, ⁴*J*_{CF} = 1.6 Hz), 133.0 (dd, ³*J*_{CF} = 8.4 Hz, ⁴*J*_{CF} = 3.1 Hz), 132.5–132.4 (m), 132.1–132.0 (m), 131.8 (dd, ³*J*_{CF} = 8.1 Hz, ⁴*J*_{CF} = 6.6 Hz), 126.6 (d, ²*J*_{CF} = 14.5 Hz), 126.5, 126.0, 123.9, 121.1, 116.6 (d, ²*J*_{CF} = 21.6 Hz), 115.4 (d, ²*J*_{CF} = 21.5 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –109.8 (s, 1F), –111.2 to –111.3 (m, 1F), –111.6 to –111.7 (m, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₂F₃NS [M–H]⁺: 366.0564, found: 366.0559.

2-(2,2-Di-3-fluorophenyl-1-fluorovinyl)benzo[*d*]thiazole (3db): White solid. Yield: 90%, mp 114.3–115.4°C. ¹H NMR (400 MHz, CDCl₃): δ 7.94 (s, 1H), 7.65 (s, 1H), 7.37–6.98 (m, 10H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.3 (d, ¹*J*_{CF} = 246.9 Hz), 162.6 (d, ¹*J*_{CF} = 244.4 Hz), 158.6 (d, ²*J*_{CF} = 29.2 Hz), 152.2, 149.3 (d, ¹*J*_{CF} = 255.4 Hz), 138.0 (dd, ³*J*_{CF} = 8.0 Hz, ³*J*_{CF} = 2.3 Hz), 137.8 (dd, ³*J*_{CF} = 7.8 Hz, ³*J*_{CF} = 6.4 Hz), 135.6, 131.1 (d, ³*J*_{CF} = 8.3 Hz), 129.8 (d, ³*J*_{CF} = 8.2 Hz), 126.9–126.8 (m), 126.6, 126.2, 125.6–125.5 (m), 124.1, 121.1, 118.1 (dd, ²*J*_{CF} = 21.7 Hz, ⁴*J*_{CF} = 3.3 Hz), 116.8 (d, ²*J*_{CF} = 22.9 Hz), 116.7 (d, ²*J*_{CF} = 23.0 Hz), 116.5 (d, ²*J*_{CF} = 20.8 Hz), 115.7 (d, ²*J*_{CF} = 20.9 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –107.9 (s, 1F), –111.2 to –111.3 (m, 1F), –112.5 to –112.6 (m, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₂F₃NS [M–H]⁺: 366.0564, found: 366.0576.

2-(2,2-Di-4-methylphenyl-1-fluorovinyl)benzo[*d*]thiazole (3fb): White solid. Yield: 70%, mp 138.7–140.1 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.42–7.38 (m, 1H), 7.35 (d, *J* = 7.6 Hz, 2H), 7.30–7.20 (m, 5H), 7.14 (d, *J* = 8.4 Hz, 2H), 2.44 (s, 3H), 2.33 (s, 3H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 159.8 (d, ²*J*_{CF} = 27.1 Hz), 152.1, 148.4 (d, ¹*J*_{CF} = 253.4 Hz), 139.4, 138.6 (d, ⁵*J*_{CF} = 1.0 Hz), 135.8 (d, ⁴*J*_{CF} = 1.8 Hz), 134.0 (d, ⁴*J*_{CF} = 2.5 Hz), 133.3 (d, ³*J*_{CF} = 6.4 Hz), 131.0 (d, ⁴*J*_{CF} = 3.0 Hz), 130.2, 130.0 (d, ³*J*_{CF} = 6.5 Hz), 129.1 (d, ²*J*_{CF} = 13.8 Hz), 129.0, 126.3, 125.7, 123.7, 121.0, 121.6, 121.4 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –111.6 (s, 1F); HRMS (EI): calcd for C₂₃H₁₈FNS [M–H]⁺: 358.1066, found: 358.1069.

(*E*/*Z*)-2-(2-(4-Fluorophenyl)-2-phenyl-1-fluorovinyl)benzo[*d*]thiazole (3gb): White solid. Yield: 92%. A mixture of *E*- and *Z*-isomers (4:3, the *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃): δ 8.03–8.00 (m, 1H), 7.72–7.65 (m, 1H), 7.50–7.30 (m, 9H), 7.18–7.02 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.5 (d, ¹*J*_{CF} = 247.7 Hz), 162.5 (d, ¹*J*_{CF} = 250.2 Hz), 159.2 (d, ²*J*_{CF} = 27.6 Hz), 159.1 (d, ²*J*_{CF} = 29.2 Hz), 152.2, 152.1, 148.8 (d, ¹*J*_{CF} = 253.2 Hz), 148.6 (d, ¹*J*_{CF} = 253.9 Hz), 136.1, 136.0, 135.7 (d, ⁴*J*_{CF} = 1.7 Hz), 135.1 (d, ⁴*J*_{CF} = 1.7 Hz), 133.6 (dd, ³*J*_{CF} = 8.3Hz, ⁴*J*_{CF} = 3.1 Hz), 131.9 (dd, ³*J*_{CF} = 8.2 Hz, ⁴*J*_{CF} = 6.7 Hz), 132.7–132.6 (m), 132.4–132.3 (m), 131.1 (d, ³*J*_{CF} = 3.0 Hz), 129.5 (d, ³*J*_{CF} = 6.2 Hz), 129.5, 129.4, 128.7, 128.4, 127.7 (d, ²*J*_{CF} = 12.9 Hz), 127.6 (d, ²*J*_{CF} = 14.8 Hz), 126.5, 126.4, 126.0, 125.9, 123.9, 123.8, 121.1, 121.0, 116.5 (d, ²*J*_{CF} = 21.5 Hz), 115.4 (d, ²*J*_{CF} = 21.5 Hz) ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ -109.7 (s), -111.0 (s), -111.6 to -111.7 (m), -112.0 to -112.1 (m); HRMS (EI): calcd for C₂₁H₁₃F₂NS [M–H]⁺: 348.0659, found: 348.0660.

2-(2,2-Diphenyl-1-fluorovinyl)benzo[*d*]**oxazole** (**3ac**): White solid. Yield: 57%, mp 111.2–112.0 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.74 (m, 1H), 7.47–7.36 (m, 8H), 7.35–7.27 (m, 5H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 157.1 (d, ²*J*_{CF} = 37.6 Hz), 150.1 (d, ⁴*J*_{CF} = 1.0 Hz), 142.7 (d, ¹*J*_{CF} = 246.8 Hz), 140.9, 136.6 (d, ³*J*_{CF} = 5.0 Hz), 136.5 (d, ⁴*J*_{CF} = 1.9 Hz), 131.1 (d, ²*J*_{CF} = 12.7 Hz), 130.5 (d, ⁴*J*_{CF} = 3.0 Hz), 130.2 (d, ³*J*_{CF} = 5.3 Hz), 128.8, 128.5, 128.4, 128.3, 126.0, 124.9, 120.7, 110.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –120.3 (s, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₄FNO [M–H]⁺: 314.0981, found: 314.0985.

2-(2,2-Di-4-fluorophenyl-1-fluorovinyl)benzo[*d*]**oxazole** (**3bc**): White solid. Yield: 58%, mp 106.3–107.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.75–7.73 (m, 1H), 7.44–7.41 (m, 2H), 7.36–7.33 (m, 3H), 7.27–7.24 (m, 2H), 7.13–7.08 (m, 4H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.0 (d, ¹*J*_{CF} = 247.0 Hz), 162.8 (d, ¹*J*_{CF} = 248.8 Hz),

156.6 (d, ${}^{2}J_{CF}$ = 37.4 Hz), 150.1, 142.8 (d, ${}^{1}J_{CF}$ = 247.3 Hz), 140.8, 132.3 (dd, ${}^{3}J_{CF}$ = 8.2 Hz, ${}^{4}J_{CF}$ = 3.1 Hz), 132.1 (dd, ${}^{3}J_{CF}$ = 8.3 Hz, ${}^{4}J_{CF}$ = 5.6 Hz), 130.5–130.1 (m), 128.9 (d, ${}^{2}J_{CF}$ = 13.1 Hz), 128.5–128.4 (m), 126.2, 125.0, 120.7, 115.6 (d, ${}^{2}J_{CF}$ = 21.6 Hz), 115.5 (d, ${}^{2}J_{CF}$ = 21.5 Hz), 110.7 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –111.3 to –111.4 (m, 1F), –112.4 to –112.5 (m, 1F), –120.0 (s, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₂F₃NO [M–H]⁺: 350.0793, found: 350.0798.

2-(2,2-Di-4-chlorophenyl-1-fluorovinyl)benzo[*d*]**oxazole** (**3cc**): White solid. Yield: 54%, mp 158.5–159.4 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.76–7.73 (m, 1H), 7.40–7.35 (m, 9H), 7.22–7.20 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 156.4 (d, ²*J*_{CF} = 37.2 Hz), 150.1, 143.1 (d, ¹*J*_{CF} = 248.8 Hz), 140.8, 135.1, 134.9, 134.7 (d, ³*J*_{CF} = 5.2 Hz), 134.5 (d, ⁴*J*_{CF} = 1.9 Hz), 131.8 (d, ⁴*J*_{CF} = 3.0 Hz), 131.4 (d, ³*J*_{CF} = 5.6 Hz), 128.8, 128.7, 128.6 (d, ²*J*_{CF} = 1.7 Hz), 126.4, 125.1, 120.8, 110.8 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –118.7 (s, 1F) ppm; HRMS (EI): calcd for C₂₁H₁₂Cl₂FNO [M–H]⁺: 382.0202, found: 382.0208.

(*E*/*Z*)-2-(2-(4-Fluorophenyl)-2-phenyl-1-fluorovinyl)benzo[*d*]oxazole (3gc): White solid. Yield: 70%. A mixture of *E*- and *Z*-isomers (4:3, the *E*/*Z* ratio was determined by ¹⁹F NMR spectroscopy). ¹H NMR (400 MHz, CDCl₃): δ 7.75–7.73 (m, 1H), 7.46–7.32 (m, 8H), 7.28–7.25 (m, 2H), 7.12–7.07 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃): δ 163.0 (d, ¹*J*_{CF} = 246.7 Hz), 162.7 (d, ¹*J*_{CF} = 250.0 Hz), 156.9 (d, ²*J*_{CF} = 37.6 Hz), 156.8 (d, ²*J*_{CF} = 37.4 Hz), 150.1, 140.9, 142.8 (d, ¹*J*_{CF} = 248.0 Hz), 142.7 (¹*J*_{CF} = 246.8 Hz), 136.4, 136.3, 136.2, 136.1, 132.6–132.5 (m), 132.5–132.4 (m), 132.3 (dd, ³*J*_{CF} = 8.3 Hz, ⁴*J*_{CF} = 3.2 Hz), 132.1 (dd, ³*J*_{CF} = 8.3 Hz, ⁴*J*_{CF} = 5.7 Hz), 130.4 (d, ³*J*_{CF} = 3.0 Hz), 130.2 (d, ³*J*_{CF} = 5.3 Hz), 130.1 (d, ²*J*_{CF} = 13.3 Hz), 130.0 (d, ²*J*_{CF} = 12.4 Hz), 128.9, 128.7, 128.5, 128.4, 126.1, 126.0, 125.0, 124.9, 120.8, 120.7, 115.5 (d, ²*J*_{CF} = 21.6 Hz), 115.4 (d, ²*J*_{CF} = 21.5 Hz), 110.7, 110.6 ppm; ¹⁹F NMR (376 MHz, CDCl₃): δ –111.6 to –111.7 (m), –112.8 to –112.9 (m), –119.9 (s), –120.6 (s) ppm; HRMS (EI): calcd for C₂₁H₁₃F₂NO [M–H]⁺: 332.0887, found: 332.0891.

References

1 M. Hu, Z. He, B. Gao, L. Li, C. Ni and J. Hu, J. Am. Chem. Soc., 2013, 135, 17302.

2 T. Kawano, K. Hirano, T. Satoh and M. Miura, J. Am. Chem. Soc., 2010, 132, 6900.

¹H, ¹³C, ¹⁹F NMR and HRMS (EI) spectra of compounds 3

¹H NMR Spectrum of 3aa

--- 122.97

HRMS (EI) of 3aa

¹H NMR Spectrum of 3ba

-110.764 -110.772 -110.772 -110.778 -110.786 -110.808 -112.048 -112.048 -112.058 -112.058 -112.058 -112.058 -112.061 -112.061 -112.063	
--	--

530	435	174	957	680	758	269	168	135	10	649	024	963	792	756	265	557	528	498	118	981	893	835	73	482	865	947	945	829	719	504
8	2	2	5	5	4	39	8	8	8	8	8	ñ	5	5	ñ	5	5	5	5	128	128	128	128	128	8	33	116	15	15	115
5	4	Ŷ,	نے	ت	۰ L	÷	-	÷	<u> </u>	Ĺ,	÷	÷	÷	÷.,	÷	÷	÷	÷.	÷	÷	÷	÷.			÷,	÷,	-	-	-	÷

HRMS (EI) of 3ba

¹H NMR Spectrum of 3ca

HRMS (EI) of 3ca

¹⁹F NMR Spectrum of 3da

883 898 906	922 930	945	156	160	176	198
	÷ -	- 0	0 0	NN	NN	NO
						- 0
	_	_		and the second sec		

¹³C NMR Spectrum of 3da

ò

HRMS (EI) of 3da

¹⁹F NMR Spectrum of 3ea

HRMS (EI) of 3ea

¹⁹F NMR Spectrum of 3fa

¹³C NMR Spectrum of 3fa

-21.366

ò

HRMS (EI) of 3fa

¹⁹F NMR Spectrum of 3ga

62 76 76	666	87 82	33108	382
0,0,0,0	2225	5 6 6 6	4444	5.5
5555	두두두	두두두두	5555	22
	_			- 12

HRMS (EI) of 3ga

¹⁹F NMR Spectrum ofb3ab

HRMS (EI) of 3ab

HRMS (EI) of 3bb

¹³C NMR Spectrum of 3db

HRMS (EI) of 3db

¹⁹F NMR Spectrum of 3fb

HRMS (EI) of 3fb

¹⁹F NMR Spectrum of 3gb

9.692	1.019	1.589	1.603	1.612	1.617	1.626	1.635	1.640	1.649	1.663	2.027	2.042	2.050	2.056	2.064	2.073	2.078	2.086	2.101
\sim	.	.	-	-	-	.	-	-	-	-	.	-	-	-	.	.	-	-	.
-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
	- H	- H		- H		- H	- I	- e		- H	- H	- e	- I		- T	- H	- I		
÷.,	- i-	<u> </u>	-	- i-	_	- i-	<u> </u>	- h-	- L	. j.	غ ا	<u> </u>	-i-	-	-i-	<u> </u>	<u> </u>	_	_

5	1	947 8	376	110	086	21	80	124	062	755	738	594	577	115	98	032	9	665	200	ADD.	200	222	202	85.	784	5	082	918	80.4	457	289	361	772	745	633	597	489	41	200	208	89	940	13	651	436	460	245	33	4 1	2
2	5 5	88	8 25	8	8	ß	ß	8	8	8	35	8	35	8	8	8	8	88	38	38	38	3 2	2 6	ň	ň	5	ě	8	R	200	38	18	27	27	23	23	8	88	8 8	88	38	35	ŝ	192	16	15	22		26	ē
1	_		<u> </u>	1			÷.,	×.	÷.	1	1	1	1	1		1	λ.	5.2						-	-	<u>.</u>	÷.	1	1	<u> </u>				1	1		1								<u> </u>	<u>.</u>		7.1	7.1	ï

HRMS (EI) of 3gb

¹⁹F NMR Spectrum of 3ac

HRMS (EI) of 3ac

ò

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180

-200

¹³C NMR Spectrum of 3cc

HRMS (EI) of 3cc

¹³C NMR Spectrum of 3gc

HRMS (EI) of 3gc

