Dihedral	Kphi (kcal/mol)	θ_0 (degrees)	Mult
С-С-О-Н	-0.34098948	0	1
С-С-О-Н	0.3780115	180	2
С-С-О-Н	0.3780115	0	3
С-О-С-Н	0.2849904	0	1
С-О-С-Н	0.1599904	180	2
С-О-С-Н	0.2849904	0	3
Н-С-С-Н	0.1419933	0	1
Н-С-С-Н	-0.7166587	180	2
Н-С-С-Н	0.1570029	0	3
С-Н-С-О	-0.327010038	0	1
С-Н-С-О	0.5359943	180	2
С-Н-С-О	0.1400096	0	3
С-С-О-С	-0.34098948	0	1
С-С-О-С	0.3780115	180	2
С-С-О-С	0.3780115	0	3
0-C-C-0	0.2039914	0	1
0-C-C-0	0.6989962	180	2
0-C-C-0	0.4799952	0	3
O-C-C-N	0.15	0	3
C-C-N-C	-0.22000478	0	1
C-C-N-C	0.3929971	180	2
C-C-N-C	0.1359943	0	3
H-C-C-N	-0.37198853	0	1

Table 1: Dihedral parameters added for force field calculations

H-C-C-N	-0.61699331	180	2
H-C-C-N	0.169001	0	3
C-N-C-H	0.1969885	0	1
C-N-C-H	-0.19299713	180	2
C-N-C-H	0.280999	0	3

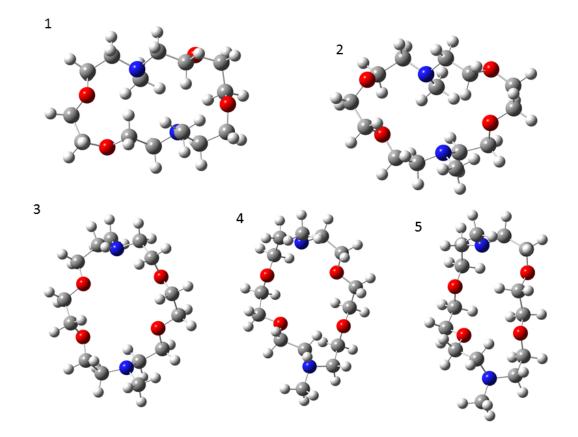


Figure S1 : Configurations related to the scans in Figure 3a (N-N scans).

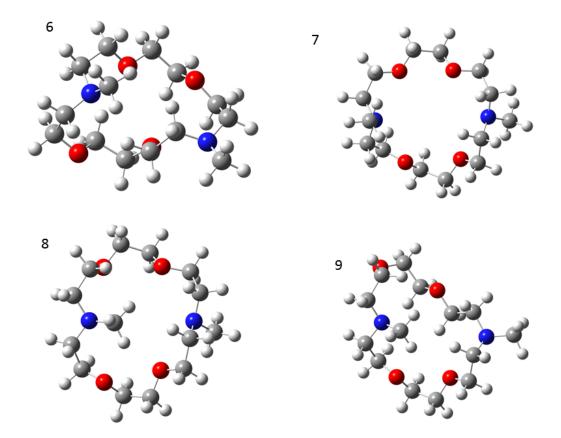


Figure S2 : Configurations related to the scans in Figure 3a (O-O scans).

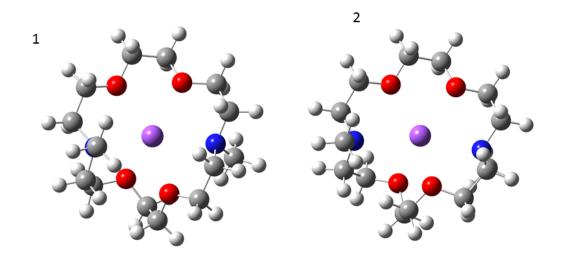


Figure S3 : Configurations related to the scans in Figure 3 b).

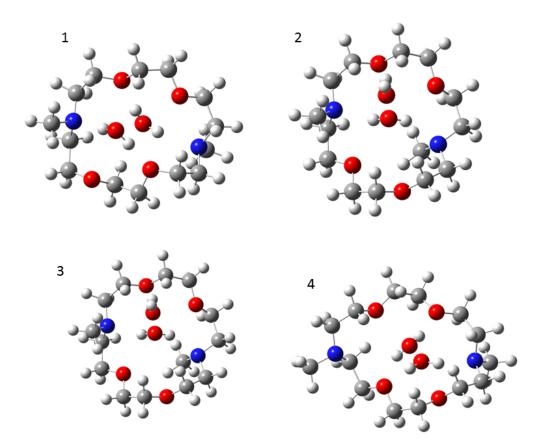


Figure S4: Configurations related to the scans in Figure 3c (N-N scans).

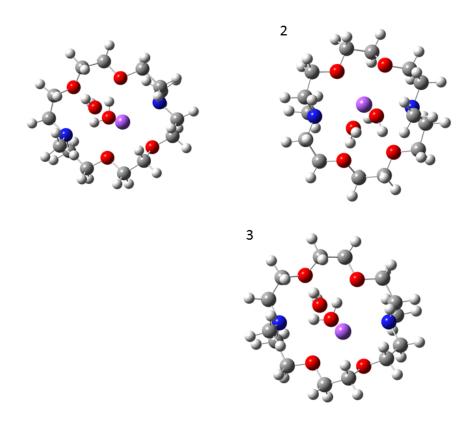


Figure S5: Configurations related to the scans in Figure 3d

Table S2: Relative,	Fnthanhy,	[ntrony on	frag anarau
Table 52: Relative.	FUUDADONV.	FULLOOV AUG	Thee energy
	,,		

	Enthalpy (kcal/mol)	Entropy (cal/mol/k)	Free energy(kcal/mol)
D _{3d}	8.13	7.76	5.81
C _i	0	0	0
Mixed	1.91	3.50	0.87

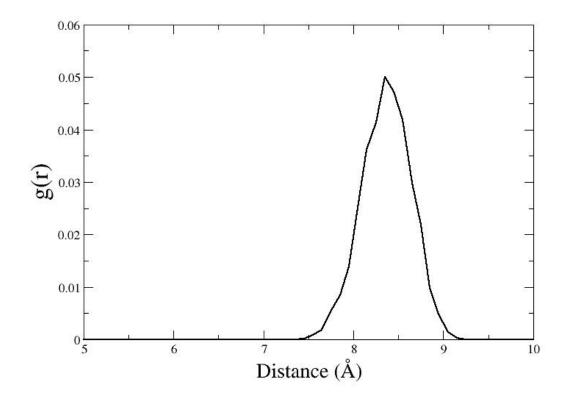


Figure S6: Diazacrown-N-N distances from the molecular dynamics simulation of hydraphile complexed to Na⁺ as it is being pulled through a lipid bilayer.

Effect of Solvation model on intermolecular distances

The distances are affected by using the solvation model but most drastically are those involving explicit water molecules. For the diazacrown/water system, the water becomes bound to only two atoms, the nitrogen and one oxygen rather than two oxygen atoms; it moves farther from one oxygen atom and closer to the nitrogen and oxygen. For the Na⁺-water system, the distance is considerably greater for the PCM model than in the gas phase. For the diazacrown-Na⁺ cluster the Na⁺ to crown oxygen and Na⁺ to crown nitrogen atom distances becomes greater. The distances for the Diazacrown-Na⁺-water system showed similar trends where the main difference between the solvation model and gas phase was in the Na⁺-water distance, which incresed due to solvation, in line with the Na⁺-water system.

Water mediated charge-transfer for Configuration 3 of diazacrown-Na⁺-water cluster

There is electron transfer from both water molecules to the Na⁺ (stabilization energies of water-O, 11.80 and water O-N, 10.65 kcal/mol). There is also electron transfer from the diazacrown to the two water molecules, which is part of the water mediated electron transfer. For Water O-N, there is transfer from both the crown oxygen (4.58 kcal/mol) and nitrogen (9.71 kcal/mol) lone pairs to water O-H anti-bonding orbitals. For Water O, there is only electron transfer (11.70 kcal/mol) from the crown oxygen lone pair to the water antibonding orbitals (no nitrogen to water transfer).