Supporting information for

A ligand-free strategy for the copper-catalyzed direct

alkynylation of trifluoromethyl ketones

Lei Wang, Ning Liu,* Bin Dai,* Xiaowei Ma and Lei Shi

School of Chemistry and Chemical Engineering, the Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North 4th Road, Shihezi, Xinjiang 832003, China Fax.: (+0086)-0993-205-7270; phone: (+0086)-0993-205-7277; e-mail: ninglau@163.com (N. Liu) ; dbinly@126.com (B. Dai)

Contents

Table S1	S2
Figure S1-S4	S3-S4
Experimental Section	S5-S6
Characterization Data	S7-S12
Cited References for Known Compounds	S13
NMR Spectra for Products	S14-S42

	$CF_3 + = $				
Entry	Solvent	T(°C)	Base	Catalyst	Yield ^[b] (%)
1	DMF	70	KOt-Bu	CuI	35
2	DMA	70	KOt-Bu	CuI	15
3	NMP	70	KOt-Bu	CuI	29
4	THF	70	KOt-Bu	CuI	4
5	Toluene	70	KOt-Bu	CuI	5
6	C ₂ H ₅ OH	70	KOt-Bu	CuI	3
7	<i>i</i> -PrOH	70	KOt-Bu	CuI	22
8	Glycerol	70	KOt-Bu	CuI	trace
9	H ₂ O	70	KOt-Bu	CuI	trace
10	DMSO	70	KOt-Bu	CuI	97
11	DMF	70	K_2CO_3	CuI	78
12	DMA	70	K_2CO_3	CuI	85
13	NMP	70	K ₂ CO ₃	CuI	65
14	THF	70	K_2CO_3	CuI	trace
15	Toluene	70	K_2CO_3	CuI	6
16	C_2H_5OH	70	K ₂ CO ₃	CuI	5
17	<i>i</i> -PrOH	70	K_2CO_3	CuI	19
18	Glycerol	70	K_2CO_3	CuI	trace
19	H ₂ O	70	K_2CO_3	CuI	trace
20	DMSO	50	K_2CO_3	FeCl ₃	0
21	DMSO	50	K ₂ CO ₃	FeSO ₄	0
22	DMSO	50	K_2CO_3	Fe(NO ₃) ₂	0
23	DMSO	50	K_2CO_3	AlCl ₃	0
24	DMSO	50	K_2CO_3	$Al_2(SO_4)_3$	0
25	DMSO	50	K_2CO_3	MgCl ₂	0
26	DMSO	50	K ₂ CO ₃	BF_3	0
27 ^[c]	DMSO	50	K_2CO_3	CuI	90
28 ^[d]	DMSO	50	K_2CO_3	CuI	96
29 ^[e]	DMSO	50	K ₂ CO ₃	CuI	72

[a] Reaction conditions: 2,2,2-trifluoroacetophenone (0.5 mmol), phenylacetylene (1.0 mmol), Cu source (10 mol%), base (20 mol%) in solvent (1 mL) under N_2 , 24 h. [b] Isolated yield. [c] In air. [d] phenylacetylene (1.5 equiv.). [e] phenylacetylene (1.2 equiv.).

Figure S1. ¹H NMR of phenylacetylene in DMSO-*d*₆.

Figure S2. ¹H NMR of phenylacetylene in DMSO- d_6 . Reaction condition: a mixture of phenylacetylene (1.0 mmol) and K₂CO₃ (1.0 mmol) in 1 mL DMSO- d_6 was allowed to react in Schlenk tubes for 24 h under nitrogen atmosphere.

Figure S3. ¹H NMR of phenylacetylene in DMSO- d_6 . Reaction condition: a mixture of phenylacetylene (1.0 mmol), K₂CO₃ (1.0 mmol), and Cu(OAc)₂ (1.0 mmol) in 1 mL DMSO- d_6 was allowed to react in Schlenk tubes for 24 h under nitrogen atmosphere.

Figure S4. ¹H NMR of 2,2,2-trifluoro-1-phenylethane-1,1-diol in DMSO- d_6 . Reaction condition: a mixture of 2,2,2-trifluoroacetophenone (1.0 mmol), K₂CO₃ (1.0 mmol), and Cu(OAc)₂ (1.0 mmol) in 1 mL DMSO- d_6 was allowed to react in Schlenk tubes for 24 h under nitrogen atmosphere.

Experimental Section

General Experimental Methods

All reactions were carried out in Schlenk tubes under an atmosphere of nitrogen. DMSO (dimethyl sulfoxide) was distilled from 4Å-molecular sieves. Trifluoromethyl ketones and other reagents were purchased from Alfa Aesar, Acros, and Adamas. ¹H NMR spectra (400 MHz) and ¹³C NMR spectra (100 MHz) were recorded on a Varian Inova-400 spectrometer using TMS as internal standard. ¹⁹F NMR spectra (376 MHz) were recorded on a Varian Inova-400 spectrometer using TMS as spectroscopy data of the compounds were collected on a Bruker ultrafleXtreme mass spectrometer. All products were isolated by short chromatography on a silica gel (300–400 mesh) column.

General Procedure for Optimization of Reaction Condition

A mixture of 2,2,2-trifluoroacetophenone (0.5 mmol), phenylacetylene (1.0 mmol), Cu source (0.05 mmol), and base (0.1 mmol) in solvent (1 mL) was allowed to react in Schlenk tubes for 24 h under nitrogen atmosphere. After reaction, the reaction mixture was added to brine (15 mL) and extracted three times with dichloromethane (3×15 mL). The solvent was concentrated under vacuum and the product was isolated by short chromatography on a silica gel (300–400 mesh) column.

General Procedure for Testing of Scope

A mixture of ketone (0.5 mmol), alkyne (0.75 mmol), $Cu(OAc)_2$ (0.05 mmol), and K_2CO_3 (0.1 mmol) in DMSO (1 mL) was allowed to react in Schlenk tubes at 50 °C or 70 °C for 24 h under nitrogen atmosphere. After reaction, the reaction mixture was added to brine (15 mL) and extracted three times with dichloromethane (3×15 mL). The solvent was concentrated under vacuum and the product was isolated by short chromatography on a silica gel (300–400 mesh) column.

General Procedure for Scaled reaction

A mixture of 2,2,2-trifluoroacetophenone (5 mmol), cyclopropyl acetylene (7.5 mmol), Cu(OAc)₂ (0.5 mmol), and K₂CO₃ (1 mmol) in DMSO (10 mL) was allowed to react in Schlenk tubes at 50 °C for 24 h. After reaction, the reaction mixture was added to brine (100 mL) and extracted three times with dichloromethane (3×100 mL). The solvent was concentrated under vacuum and the product was isolated by short chromatography on a silica gel (300–400 mesh) column.

Characterization Data of Products

1,1,1-trifluoro-2,4-diphenylbut-3-yn-2-ol [1]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (133 mg, 96%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.00 (d, *J* = 4.0 Hz, 1H), 7.84-7.82 (m, 2H), 7.60 (d, *J* = 3.2 Hz, 2H), 7.52-7.44 (m, 6H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 137.15, 132.11, 130.05, 129.67, 129.26, 128.60, 127.55, 122.83 (t, *J*_{C-F} = 284.0 Hz), 119.98, 86.94, 86.15, 72.43 (q, *J*_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -0.86, ppm.

1,1,1-trifluoro-2-phenyl-4-(p-tolyl)but-3-yn-2-ol [2]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (133 mg, 91%); ¹H NMR (400 MHz, DMSO- d_6): δ 7.93 (d, J = 2.0 Hz, 1H), 7.81 (d, J = 6.0 Hz, 2H), 7.48 (d, J = 7.2 Hz, 5H), 7.26 (d, J = 7.2 Hz, 2H), 2.34 (s, 3H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 139.98, 137.24, 132.03, 129.88, 129.64, 128.58, 127.54, 122.84 (t, J_{C-F} = 284.0 Hz), 118.08, 87.10, 85.51, 72.56 (q, J_{C-F} = 31.0 Hz), 21.44, ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -0.85, ppm.

1,1,1-trifluoro-4-(4-methoxyphenyl)-2-phenylbut-3-yn-2-ol [1]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a white solid (148 mg, 96%), mp = 94-95 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.85 (s, 1H), 7.77 (d, *J* = 2.0 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 5H), 7.00 (d, *J* = 2.0 Hz, 2H), 3.80 (s, 3H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.57, 137.28, 133.78, 129.63, 128.59, 127.54, 122.84 (t, *J*_{C-F} = 284.0 Hz), 114.93, 112.89, 87.07, 84.72, 72.52 (q, *J*_{C-F} = 31.0 Hz), 55.75, ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -0.83, ppm.

4-(4-ethylphenyl)-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (135 mg, 89%); ¹H NMR (400 MHz, DMSO- d_6): δ 7.94 (s, 1H), 7.81 (d, J = 7.2

Hz, 2H), 7.51-7.43 (m, 5H), 7.29 (d, J = 8.0 Hz, 2H), 2.64 (q, J = 7.6 Hz, 2H), 1.18 (t, J = 7.6 Hz, 3H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 146.13, 137.23, 132.12, 129.63, 128.69, 128.57, 127.54, 122.83 (t, $J_{C-F} = 284.0$ Hz), 118.33, 87.10, 85.51, 72.55 (q, $J_{C-F} = 31.0$ Hz), 28.53, 15.59, ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -0.89, ppm; HRMS (MALDI): m/z calcd for C₁₈H₁₅F₃O [M+H-H₂O]⁺ 287.1042, found 287.1042.

4-([1,1'-biphenyl]-4-yl)-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a white solid (162 mg, 92%), mp = 124-125 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.96 (s, 1H), 7.79-7.76 (m, 4H), 7.72 (d, *J* = 7.2 Hz, 2H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.52-7.46 (m, 5H), 7.41 (d, *J* = 7.2 Hz, 1H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 141.58, 139.34, 137.04, 132.75, 129.76, 129.52, 128.67, 128.55, 127.53, 127.49, 127.17, 122.78 (t, *J*_{C-F} = 284.0 Hz), 109.99, 86.77, 86.72, 72.39 (t, *J*_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -0.78, ppm; HRMS (MALDI): m/z calcd for C₂₂H₁₅F₃O [M+H-H₂O]⁺ 335.1042, found 335.1042.

 $\label{eq:linear} \textbf{1,1,1-trifluoro-4-(4-fluorophenyl)-2-phenylbut-3-yn-2-ol} [1]$

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (128 mg, 87%); ¹H NMR (400 MHz, DMSO- d_6): δ 7.95 (s, 1H), 7.78 (d, J = 7.2 Hz, 2H), 7.65 (t, J = 7.2 Hz, 2H), 7.51-7.44 (m, 3H), 7.30 (t, J = 8.8 Hz, 2H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 164.20, 161.73, 137.00, 134.66, 134.57, 129.72, 128.63, 127.52, 122.75 (t, J_{C-F} = 284.0 Hz), 117.49, 117.46, 116.74, 116.51, 85.92, 85.86, 72.52 (q, J_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -0.84, - 30.90 - -30.97 (m), ppm.

4-(4-chlorophenyl)-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol [2]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (101 mg, 65%); ¹H NMR (400 MHz, DMSO- d_6): δ 8.02 (s, 1H), 7.80 (d, J = 8.0 Hz, 2H), 7.63-7.60 (m, 2H), 7.54-7.44 (m, 5H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 136.66, 134.71, 133.64, 129.49, 129.25, 128.39, 127.27, 123.90 (d, J_{C-F} = 285.0 Hz), 119.64, 86.87, 85.53, 72.31 (q, J_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz,

DMSO- d_6): δ -0.82, ppm.

4-(4-bromophenyl)-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (137 mg, 77%); ¹H NMR (400 MHz, DMSO- d_6): δ 8.00 (s, 1H), 7.79 (d, J = 7.2 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.55-7.44 (m, 5H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 136.87, 134.04, 132.40, 129.76, 128.65, 127.51, 123.68, 122.69 (t, J_{C-F} = 284.0 Hz), 120.24, 87.24, 85.87, 72.58 (q, J_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -0.79, ppm; HRMS (MALDI): m/z calcd for C₁₆H₁₀BrF₃O [M+H-H₂O]⁺ 336.9834, found 336.9831.

1,1,1-trifluoro-4-(3-fluorophenyl)-2-phenylbut-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (93 mg, 63%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.00 (s, 1H), 7.78 (d, *J* = 7.2 Hz, 2H), 7.54-7.42 (m, 6H), 7.36 (t, *J* = 8.4 Hz, 1H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.48, 161.04, 136.81, 131.59, 131.51, 129.79, 128.68, 128.61, 128.58, 127.52, 122.95, 122.86, 122.69 (t, *J*_{C-F} = 284.0 Hz), 118.87, 118.64, 117.65, 117.44, 86.97, 85.59, 85.55, 72.53 (q, *J*_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -0.78, -33.86 - -33.92 (m), ppm; HRMS (MALDI): m/z calcd for C₁₆H₁₀F₄O [M+H-H₂O]⁺ 277.0635, found 277.0635.

1,1,1-trifluoro-2-phenyl-4-(m-tolyl)but-3-yn-2-ol [2]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (142 mg, 97%); ¹H NMR (400 MHz, DMSO- d_6): δ 7.96 (s, 1H), 7.81 (d, J = 7.2 Hz, 2H), 7.52-7.44 (m, 3H), 7.42-7.27 (m, 4H), 2.33(s, 3H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 138.50, 136.92, 132.25, 130.57, 129.42, 128.93, 128.91, 128.35, 127.29, 122.57 (t, J_{C-F} = 285.0 Hz), 120.70, 86.82, 85.54, 72.30 (q, J_{C-F} = 31.0 Hz), 20.79, ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -0.86, ppm.

CF₃

4-cyclopropyl-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol [1]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (80 mg, 67%); ¹H NMR (400 MHz, DMSO- d_6): δ 7.65 (d, J = 8.0 Hz, 2H), 7.54 (s, 1H), 7.45-7.38 (m, 3H), 1.52-1.46 (m, 1H), 0.88 (dd, J = 8.2 Hz, J = 2.8 Hz, 2H), 0.72-0.69 (m, 2H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 138.19, 130.05, 129.03, 128.10, 123.43 (t, J_{C-F} = 284.0 Hz), 92.09, 72.82, 72.58 (q, J_{C-F} = 31.0 Hz), 9.19, 9.14, 0.00, ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -1.08, ppm.

4-cyclohexyl-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (86 mg, 61%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.69 (d, *J* = 6.8 Hz, 2H), 7.54 (s, 1H), 7.46-7.39 (m, 3H), 2.64-2.60 (m, 1H), 1.76 (d, *J* = 8.4 Hz, 2H), 1.70-1.66 (m, 2H), 1.53-1.43 (m, 3H), 1.38-1.35 (m, 3H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 137.65, 129.42, 128.38, 127.50, 122.86 (t, *J*_{C-F} = 284.0 Hz), 92.01, 77.59, 71.97 (q, *J*_{C-F} = 31.0 Hz), 32.02 (d, *J*_{C-F} = 3.7 Hz), 28.32, 25.73, 24.29, ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -1.25, ppm; HRMS (EI): m/z calcd for C₁₆H₁₇F₃O [M]⁺ 282.1232, found 282.1234.

4-(cyclohex-1-en-1-yl)-1,1,1-trifluoro-2-phenylbut-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (116 mg, 83%); ¹H NMR (400 MHz, DMSO- d_6): δ 7.70 (s, 2H), 7.68 (s, 1H), 7.47-7.40 (m, 3H), 6.26-6.24 (m, 1H), 2.12-2.10 (m, 4H), 1.62-1.54 (m, 4H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 137.71, 137.37, 129.53, 128.48, 127.47, 122.79 (t, $J_{C-F} = 284.0$ Hz), 119.24, 88.73, 83.53, 72.35 (q, $J_{C-F} = 31.0$ Hz), 28.76, 25.55, 22.06, 21.26, ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -1.01, ppm; HRMS (MALDI): m/z calcd for C₁₆H₁₅F₃O [M+H-H₂O]⁺ 263.1042, found 263.1044.

1,1,1-trifluoro-2-phenylnon-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (96 mg, 71%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.69 (d, *J* = 7.6 Hz, 2H), 7.56 (s, 1H), 7.45-7.41 (m, 3H), 2.35 (t, *J* = 7.2 Hz, 2H), 1.56-1.49 (m, 2H), 1.43-1.29 (m, 4H), 0.88 (t, *J* = 7.2 Hz, 3H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 137.62, 129.43, 128.35, 127.49, 122.85 (t, *J*_{C-F} = 284.0 Hz), 88.54, 77.41, 71.98 (q, *J*_{C-F} = 31.0 Hz), 30.75, 27.78, 21.97, 18.22, 14.25, ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -1.20, ppm; HRMS (EI): m/z calcd for C₁₅H₁₇F₃O [M]⁺ 270.1232, found 270.1231.

1,1,1-trifluoro-2-phenyl-4-(thiophen-3-yl)but-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (120 mg, 85%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.00 (s, 1H), 7.94 (s, 1H), 7.79 (d, *J* = 6.8 Hz, 2H), 7.67 (s, 1H), 7.49-7.47 (m, 3H), 7.28 (d, *J* = 4.8 Hz, 1H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 137.13, 132.05, 130.01, 129.67, 128.60, 127.70, 127.54, 122.79 (t, *J*_{C-F} = 284.0 Hz), 85.53, 82.58, 72.59 (q, *J*_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -0.79, ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -0.77, ppm; HRMS (EI): m/z calcd for C₁₄H₉F₃OS [M]⁺ 282.0326, found 282.0327.

2-(4-chlorophenyl)-4-cyclopropyl-1,1,1-trifluorobut-3-yn-2-ol

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (111 mg, 81%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.71 (s, 1H), 7.66 (d, *J* = 8.4 Hz, 2H), 7.50 (d, *J* = 8.4 Hz, 2H), 1.53-1.47 (s, 1H), 0.93-0.87 (m, 2H), 0.76-0.69 (m, 2H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 137.26, 135.05, 130.05, 129.18, 123.25 (t, *J*_{C-F} = 284.0 Hz), 92.58, 72.33, 72.25, (q, *J*_{C-F} = 31.0 Hz), 9.25, 9.20, 0.00, ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -1.27, ppm; HRMS (MALDI): m/z calcd for C₁₃H₁₀ClF₃O [M+H-H₂O]⁺ 257.0339, found 257.0340.

2-(4-bromophenyl)-1,1,1-trifluoro-4-phenylbut-3-yn-2-ol [3]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (165 mg, 93%); ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.14 (s, 1H), 7.73 (q, *J* = 8.8 Hz, 4H), 7.61-7.59 (m, 2H), 7.52-7.44 (m, 3H), ppm; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 136.56, 132.15, 131.68, 130.19, 129.74, 129.28, 123.36, 122.53 (t, *J*_{C-F} = 284.0 Hz), 120.85, 87.25, 85.46, 72.22 (q, *J*_{C-F} = 31.0 Hz), ppm; ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -0.98, ppm.

1,1,1-trifluoro-4-phenyl-2-(p-tolyl)but-3-yn-2-ol [1]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (96 mg, 66%); ¹H NMR (400 MHz, DMSO- d_6): δ 7.88 (s, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.57 (dd, J = 7.2 Hz, J = 2.0 Hz, 2H), 7.50-7.43 (m, 3H), 7.28 (d, J = 8.0 Hz, 2H),

2.34 (s, 3H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 139.17, 134.18, 132.09, 130.05, 129.29, 129.16, 127.42, 122.83 (t, $J_{C-F} = 284.0$ Hz), 121.11, 86.74, 86.24, 72.41 (q, $J_{C-F} = 31.0$ Hz), 21.08, ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ -0.93, ppm.

ethyl 2-hydroxy-4-phenyl-2-(trifluoromethyl)but-3-ynoate [4]

Purification by flash chromatography (petroleum ether/EtOAc = 10:1): a pale yellow oil (131 mg, 96%); ¹H NMR (400 MHz, DMSO- d_6): δ 8.30 (s, 1H), 7.54-7.44 (m, 5H), 4.34-4.31 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), ppm; ¹³C NMR (100 MHz, DMSO- d_6): δ 165.18, 132.16, 130.39, 129.30, 122.76 (q, $J_{C-F} = 284.0$ Hz), 120.39, 86.71, 82.04, 72.12 (q, $J_{C-F} = 32.0$ Hz), 63.47, 14.11, ppm; ¹⁹F NMR (376 MHz, DMSO- d_6): δ 1.14, ppm.

Reference

- C. A. Correia, D. T. McQuade and P. H. Seeberger, Adv. Synth. Catal., 2013, 355, 3517– 3521.
- [2] H. Wang, K.-F. Yang, L. Li, Y. Bai, Z.-J. Zheng, W.-Q. Zhang, Z.-W. Gao and L.-W. Xu, *ChemCatChem*, 2014, **6**, 580–591.
- [3] R. Motoki, M. Kanai and M. Shibasaki, Org. Lett., 2007, 9, 2997–3000.
- [4] G.-J. Deng and C.-J. Li, Synlett, 2008, 1571-1573.

NMR Spectra for all Products

