Electronic Supplementary Information (ESI)

Room-temperature synthesis with inert bubble templates to produce "clean" PdCoP alloy nanoparticle networks for enhanced hydrazine electro-oxidation

Yuanyuan Ma¹, Rongfang Wang^{1*}, Hui Wang¹, Julian Key², Shan Ji^{2**}

1 College of Chemistry and Chemical Engineering, Northwest Normal University,

Lanzhou 730070, China

2 South African Institute for Advanced Materials Chemistry, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa

Sample	CoCl ₂ •6H ₂ O (mg)	NaBH ₄ (mg)	Bubbled N ₂	Initial atom ratio Pd:Co:P	Actual atom ratio Pd:Co:P
PdCoP-1	160	70.3	\checkmark	1:6:14	1:5.6:11
PdCoP-2	215	76.4	\checkmark	1:8:14	1:7.5:11
PdCoP-3	270	80.6	\checkmark	1:10:14	1:9.2:11
PdCoP-4	325	92.0	\checkmark	1:12:14	1:11.5:11
PdCoP-5	380	120	\checkmark	1:14:14	1:13.4:11
PdCoP GA	270	80.6	×	1:10:14	1:9.5:11
PdCo ANN	270	71.2		1:10:14	1:5.5

Table S1. Synthesis conditions and the mass of different precursors.

Figure S1. HRTEM image of PdCoP-3.

Figure S2. SEM images of the PdCoP-1(a), PdCoP-2(b), PdCoP-4(c), PdCoP-5(d)

samples.

Figure S3. SEM image of the PdCoP grain aggregates (GA).

Figure S4. SEM images of PdCoP samples with a molar ratio of Pd:Co:P=1:10:14

prepared by bubbling Ar (a) and He (b) gas.

Figure S5. SEM images of the growth intermediates of the PdCoP samples with a molar ratio of Pd:Co:P=1:10:14 produced after (a) 0.5 h, and (b) 1.5 h.

Figure S6. SEM image of the PdCo ANN.

Figure S7. SEM images of PdCoP (a-d) samples. These samples were prepared by solvethermal synthesis as follows: 160 mg of NaH₂PO₂·H₂O and 480 mg of hexadecyl trimethyl ammonium bromide (CTAB) were dissolved in 30 mL water. 10 mL aqueous solution containing 20 mg of PdCl₂ with pH ~ 9 (NaOH) was added into the above solution. Sequently, 20 mL of aqueous solution

containing 80.6 mg of NaBH₄ was added into the mixture under stirring, and the obtained solution was transferred to 100 mL Teflon-lined autoclaves, sealed and heated at 120 °C for 12 h, and allowed to cool naturally to ambient temperature. The resulting solid products were collected by centrifugation, washed with distilled water and ethanol. The final products, PdCoP-a were obtained. For PdCoP-b, PdCoP-c, and PdCoP-d, the above procedure and materials were used but with replacement of solvent and surfactant as shown in Table S2:

Sample	Solvent	Surfactant
PdCoP-a	H ₂ O	СТАВ
PdCoP-b	C ₂ H ₅ OH	СТАВ
PdCoP-c	H ₂ O	$\mathrm{SDS}^{\mathrm{a}}$
PdCoP-d	C ₂ H ₅ OH	$\mathrm{SDS}^{\mathrm{a}}$

Table S2. The kinds of solvent and surfactant used in solvothermal synthesis.

^a sodium dodecyl sulfate

Figure S8. (a) XRD patterns of PdCoP-1, PdCoP-2, PdCoP-4, and PdCoP GA.

Figure S9. (a) N₂ adsorption-desorption isotherms, and (b) pore size distribution of PdCoP-1, PdCoP-2, PdCoP-4, and PdCoP GA.

Samples	BET surface area (m ² g ⁻¹)	The range of pores	Pore volume (cm ³ g ⁻¹)
PdCoP-1	76.2	mesopore	0.486
PdCoP-2	115.4	mesopore	0.710
PdCoP-3	73.1	mesopore	0.446
PdCoP-4	94.7	mesopore	0.725
PdCoP GA	38.6	micropore and mesopore	0.275
PdCo	49.5	mesopore	0.390

Table S3. Porous structure of six samples obtained from its N_2 isotherms.

Sample	Pd 3d	BE^{a}	Concentration ^b
	0	340.9&335.5	92.0
PdCoP-3	2	342.5&336.8	8.0
PdCo ANN	0	340.7&335.3	87.2
	2	342.9&336.5	12.8

Table S4. Assignments, Binding energies (BEs) and concentrations of Pd 3d species

in PdCoP-3 and PdCo ANN obtained from XPS results.

^a Binding energy (in eV). ^b Per species (in at %).

Figure S10. Co 3p XPS spectra of PdCoP-3 and PdCo ANN.

Figure S11. (c) CVs on PdCoP-1, PdCoP-2, and PdCoP-4 electrodes in N_2 -saturated

0.1 mol L^{-1} KOH solution at a scan rate of 20 mV s⁻¹.

Figure S12. CVs on a series of PdCoP ANN electrodes in N₂-saturated 0.1 mol L⁻¹ N₂H₄ + 0.1 mol L⁻¹ KOH + 0.1 mol L⁻¹ KOH solution at a scan rate of 100 mV s⁻¹.

Figure S13. Chronoamperometry curves of the all samples in N₂-saturated 0.1 mol L⁻¹ N₂H₄ + 0.1 mol L⁻¹ KOH + 0.1 mol L⁻¹ KCl solution at a fixed potential of -0.3 V.

Figure S14. (c) CVs on PdCoP-3 (a), PdCoP GA (b) and PdCo ANN electrodes in

 $N_2\mbox{-saturated }0.1\mbox{ mol }L^{\mbox{-}1}\ N_2H_4$ + 0.1 mol $L^{\mbox{-}1}\ KOH$ + 0.1 mol $L^{\mbox{-}1}\ KCl$ solution at a scan rate of 20 mV s^{\mbox{-}1}.