Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Sustainable activated carbons prepared from a sucrosederived hydrochar: remarkable adsorbents for pharmaceutical compounds

Ana S. Mestre^{a,b*}, Emil Tyszko^a, Marta A. Andrade^a, Margarida Galhetas^a,

Cristina Freire^b, Ana P. Carvalho^{a*}

^a Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa,

1749-016 Lisboa (Portugal)

^b REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências,

Universidade do Porto, 4169-007 (Portugal)

Kinetic and equilibrium models

	Model	Non-linear form	Linear form	Ref.
Kinetic	Pseudo-first order	$\frac{\mathrm{d}q_t}{\mathrm{d}t} = k_1 \left(q_e - q_t \right)$	$\log(q_e - q_t) = \log(q_e) - \left(\frac{k_1}{2.303}\right)t$	1
	Pseudo-second order	$\frac{\mathrm{d}q_t}{\mathrm{d}t} = k_2 (q_e - q_t)^2$	$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \left(\frac{1}{q_e}\right)t$	1
Isotherm	Langmuir	$q_e = \frac{b \ q_m C_e}{1 + b \ C_e}$	$\frac{C_e}{q_e} = \frac{1}{K_L q_m} + \frac{1}{q_m} C_e$	2
	Freundlich	$q_e = K_{\rm F}(C_e)^{1/n}$	$\ln(q_e) = \ln(K_{\rm F}) + \frac{1}{n}\ln(C_e)$	3

Table S1. Kinetic and isotherm models in their non-linear and linear forms.

Kinetic parameters: k_1 - pseudo-first order rate constant (h⁻¹), k_2 - pseudo-second order rate constant (g mg⁻¹ h⁻¹), q_e and q_t - adsorbate uptake (mg g⁻¹) at equilibrium and at time *t* (h).

Isotherm parameters: q_e – uptake at equilibrium (mg g⁻¹), K_L – Langmuir constant (dm³ mg⁻¹), K_F – Freundlich constant (mg^{1-1/n} (dm³)^{1/n} g⁻¹), n – Freundlich exponent, q_m - monolayer adsorption capacity (mg g⁻¹), C_e – solution concentration at equilibrium (mg g⁻¹).

SEM images of sucrose-derived carbons obtained by KOH activation at increasing temperatures

Figure S1. SEM images of sucrose-derived carbons obtained by KOH activation at 600 °C (SH600), 700 °C (SH700) and 800 °C (SH800).

Relationship between the octanol-water partition coefficient and water solubility

Figure S2. The relation between the octanol-water partition coefficient (log K_{ow}) and water solubility (log S_w) for paracetamol, clofibric acid, caffeine and iopamidol (molecular pharmaceutical compounds). The line was obtained by regression log K_{ow} on log S_w .

Screening studies of PhACs removal using 9 cm³ of PhAC solution

Figure S3. Removal efficiency of the mentioned activated carbons for the five PhACs (6 mg carbon/9 cm³ of PhAC solution with 180 mg dm⁻³, 24 h of contact time at 30 °C).

Screening studies of PhACs removal using 30 cm³ of PhAC solution

Figure S4. Removal efficiency of the mentioned activated carbons for paracetamol and iopamidol (6 mg carbon/30 cm³ of PhAC solution with 180 mg dm⁻³, 24 h contact time at 30 °C).

Linear trend between removal efficiency and $V_{\alpha \text{ super}} + V_{\text{meso}}$ for iopamidol

Figure S5. Correlation between the removal efficiency and $V_{\alpha \text{ super}} + V_{\text{meso}}$ for iopamidol (6 mg carbon/9 cm³ of PhAC solution with 180 mg dm⁻³, 24 h of contact time at 30 °C).

References

- 1. Y.-S. Ho, J. Hazard. Mater., 2006, **136**, 681-689.
- 2. I. Langmuir, J. Am. Chem. Soc., 1918, 40, 1361-1403.
- 3. H. M. F. Freundlich, J. Phys. Chem., 1906, 57, 385-470.