Effect of reactive organoclay on physicochemical properties of vegetable oil-based waterborne polyurethane nanocomposites

T. Gurunathan^{1,2,*} Smita Mohanty^{1,2,} Sanjay K. Nayak^{1,2}

¹Advanced Research School for Technology and Product Simulation (ARSTPS), Central

Institute of Plastics Engineering & Technology, Guindy, Chennai - 600032, India

²Laboratory for Advanced Research in Polymeric Materials (LARPM), Central Institute of

Plastics Engineering and Technology, Bhubaneswar -751024, India

*Address correspondence to:

T. Gurunathan,

Central Institute of Plastics Engineering & Technology, Guindy, Chennai - 600032, India E-mail: jguru001@gamil.com

Fig. S1 ¹H-NMR spectra of CO (a) and castor oil-based PUP (b)

Fig. S2. ¹³C-NMR spectra of CO (a) and castor oil-based PUP (b)

Fig. S3. FT-IR spectra of neat CO and C30B

Fig. S4 WAXD intensity profiles of neat C30B and WPU-C30B nanocomposites.

Fig. S5 DSC thermograms of WPU-C30B0 and WPU-C30B nanocomposites

Fig. S6 Tensile stress-strain curves for the WPU-C30B nanocomposites