Supporting Information

The specific surface areas of α -S and α -S/C₃N₄ heterojunctions are determined. The specific surface areas of α -S, S₁, S₂ and S₃ are 3.79, 17.6, 21.7 45.2 and 58.0 m²/g, respectively. Surface area of the photocatalyst can provide active reaction sites and the adsorption positions of the reactants. In general, photocatalysts with big specific area can exhibit high photocatalytic ability. And the exact causal relationship of the specific surface area and the photocatalytic ability will be discussed in the following research.

Figure S1 C_t/C_0 of the RhB concentration versus reaction time in photocatalytic degradation with ultra-thin C_3N_4 nanosheet under visible light illumination.

Oxidizing species

Figure S2 C_t/C_0 of the RhB concentration versus reaction time for photocatalytic degradation with

(a) α -S and (b) S₂ added different scavengers under visible light illumination.

To probe the oxidizing species in the photocatalytic degradation of RhB with α -S, EDTA-Na₂, *p*-benzpquinone and TBA, efficient holes, $\cdot O_2^-$ and $\cdot OH$ radicals scavengers, are separately added in the solution. The degradation rate of RhB is obviously decreased with the addition of each scavengers, indicating that holes, $\cdot O_2^$ and $\cdot OH$ radicals are all the potential reactive species in the process of the photocatalytic degradation of RhB (Figure S2 (a)). Due to the positive VB potential of α -S (2.4 eV vs. NHE) to the standard redox potential of $\cdot OH/OH^-$ (1.99 eV vs. NHE), the photogenerated holes can react with surface absorbed OH⁻ to generate $\cdot OH$, which then can oxidize RhB. Because the CB potential of α -S (-0.4 eV vs. NHE) is negative than the standard redox potential of $O_2/\cdot O_2^-$ (-0.33 eV vs. NHE), the electrons can reduce the O_2 to generate $\cdot O_2^-$, which is a common oxidizing species in the photocatalytic process. Thus, combined with holes itself, the reactive species involved in the degradation of RhB are holes, $\cdot O_2^-$ and $\cdot OH$ radicals. Similar experiments were also conducted S₂ as the photocatalyst, as illustrated in Figure S2 (b). In the presence of the EDTA-Na₂, or *p*-benzpquinone, the elimination of RhB is decelerated, suggesting the holes and \cdot O₂⁻ radicals all might contribute to the oxidation of RhB. However, when TBA is added, the removal rate is not obviously decreased. Based on this experimental result, it can be proposed that the \cdot OH radical is not the oxidizing species. It could be attributed to the fact that the holes in the VB of C₃N₄ can directly oxide the RhB, but cannot oxide the OH⁻ to generate \cdot OH radicals due to the negative potential of VB of C₃N₄ to the standard redox potential of \cdot OH/OH⁻.