Electronic Supporting Information (ESI)

Metal-free DBU promoted regioselective synthesis of isoxazoles and isoxazolines[†]

Shabber Mohammed,^{ab} Ram A. Vishwakarma,^{ab} and Sandip B. Bharate^{ab*}

^aMedicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

^bAcademy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India.

*E-mail: <u>sbharate@iiim.ac.in</u>; <u>sandipbharate@gmail.com</u>

Fax: +91-191-2569333; Tel: +91-191-2569000 (Extn. 345)

[†] IIIM Publication Number. IIIM/1723/2014

CONTENTS

Sr. No.	Section	Page no
S1.	Experimental procedures	S4
S2.	Spectral data of isoxazole/isoxazolines	S5-17
S3.	Scanned copies of ¹ H, ¹³ C and DEPT135 NMR spectra's of Isoxazole/ isoxazolines	S18
S3.1	¹ H, ¹³ C and DEPT135 NMR spectra of 4-(5-phenylisoxazol-3-yl)phenol (4a)	S18-19
S3.2	¹ H, ¹³ C and DEPT135 NMR spectra of spectra's of 3,5-diphenylisoxazole (4b)	S20
\$3.3	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(4-methoxyphenyl)-5-phenylisoxazole (4c)	S21-22
S3.4	¹ H, ¹³ C and DEPT135 NMR spectra of 5-phenyl-3-(p-tolyl)isoxazole (4d)	S23-24
S3.5	¹ H, ¹³ C and DEPT135 NMR spectra of 5-phenyl-3-(o-tolyl)isoxazole (4e)	S25-26
\$3.6	¹ H, ¹³ C and DEPT135 NMR spectra of 4-(5-(4-(tert-butyl)phenyl)isoxazol-3yl) phenol (4f)	S27-28
S3.7	¹ H, ¹³ C, and DEPT135 NMR spectra of 4-(5-(4-ethylphenyl)isoxazole-3-yl)phenol (4g)	S29-30
S3.8	¹ H, ¹³ C and DEPT135 NMR spectra of 1-((3-(p-tolyl) isoxazol-5-yl)methyl)indoline- 2,3-dione (4h)	S31-32
S3.9	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(3-(p-tolyl)isoxazole-5-yl)phenol (4i)	S33-34
S3.10	¹ H, ¹³ C and DEPT135 NMR spectra of 4-(5-(hydroxymethyl)isoxazole-3-yl)phenol (4j)	S35-36
S3.11	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(1H-indol-3-yl)-5-phenylisoxazole (4 k)	S37-38
S3.12	¹ H, ¹³ C and DEPT135 NMR spectra of 5-phenyl-3-(pyridine-2-yl) isoxazole (4l)	S39-40
S3.13	¹ H, ¹³ C, and DEPT135 spectra of 3,5-diphenyl-4,5-dihydroisoxazole (6a)	S41-42
S3.14	¹ H, ¹³ C, and DEPT135 spectra of 4-(5-(4-fluorophenyl)-4,5-dihydroisoxazol-3-yl) phenol (6b)	S43-44
S3.15	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(2-ethoxyphenyl)-5-(4-fluorophenyl)-4,5- dihydroisoxazole (6c)	S45-46
S3.16	¹ H, ¹³ C and DEPT135 NMR spectra of 4-(5-phenyl-4,5-dihydroisoxazole-3-yl) phenol (6d)	S47-48
S3.17	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(4-methoxyphenyl)-5-phenyl-4,5- dihydroisoxazole (6e)	S49
S3.18	¹ H, ¹³ C and DEPT135 NMR spectra of 5-phenyl-3-(p-tolyl)-4,5-dihydroisoxazole (6f)	S50-51
S3.19	¹ H, ¹³ C, and DEPT135 NMR spectra of 5-phenyl-3-(o-tolyl)-4,5-dihydroisoxazole (6g)	852-53
S3.20	¹ H, ¹³ C, DEPT135 NMR spectra of 5-(3,4-dimethoxyphenyl)-3-phenyl-4,5- dihydroisoxazole (6h)	S54-55
\$3.21	¹ H, ¹³ C and DEPT135 NMR spectra of 5-(3,4-dimethoxyphenyl)-3-(p-tolyl)-4,5 dihydroicexezolo (<i>G</i> i)	S56-57
S3.22	¹ H, ¹³ C and DEPT135 NMR spectra of 5-(4-fluorophenvl)-3-(4-methoxyphenvl)-4.5-	S58-59

	dihydroisoxazole (6j)	
\$3.23	¹ H, ¹³ C and DEPT135 NMR spectra of 5-(4-fluorophenyl)-3-phenyl-4,5- dihydroisoxazole (6k)	S60-61
\$3.24	¹ H, ¹³ C and DEPT135 NMR spectra of 5-(4-fluorophenyl)-3-(p-tolyl)-4,5- dihydroisoxazole (6 I)	S62-63
S3.25	¹ H, ¹³ C and DEPT135 NMR spectra of 5-phenyl-3-(pyridine-2-yl)-4,5- dihydroisoxazole (6m)	S64-65
\$3.26	¹ H, ¹³ C and DEPT135 NMR spectra of 5-(4-fluorophenyl)-3-(o-tolyl)-4,5- dihydroisoxazole (6n)	S66-67
\$3.27	¹ H, ¹³ C and DEPT135 NMR spectra of 5-(3,4-dimethoxyphenyl)-3-(4-methoxyphenyl)isoxazole (60)	S68-69
S3.28	¹ H, ¹³ C and DEPT135 NMR spectra of 5-(3,4-dimethoxyphenyl)-3-(o-tolyl)-4,5- dihydroisoxazole (6p)	S70-71
\$3.29	¹ H, ¹³ C and DEPT135 NMR spectra 3-(1H-indol-3yl)-5-phenyl-4,5-dihydroisoxazole (6q)	S72-73
S3.30	¹ H, ¹³ C and DEPT135 NMR spectra of 2-chloro-4-(5-phenylisoxazole-3-yl)phenol (7a)	S74-75
\$3.31	¹ H, ¹³ C and DEPT135 NMR spectra of 2-chloro-4-(5-(p-tolyl)isoxazole-3-yl)phenol (7b)	S76-77
\$3.32	¹ H, ¹³ C and DEPT135 NMR spectra of 2-chloro-4-(5-(4-ethylphenyl)isoxazole-3- yl)phenol (7c)	S78-79
\$3.33	¹ H, ¹³ C and DEPT135 NMR spectra of 2-chloro-4-(5-phenylisoxazol-3-yl)phenol (7d)	S80-81
\$3.34	¹ H, ¹³ C and DEPT135 NMR spectra of 2-chloro-4-(5-(4-fluorophenyl)-4,5- dihydroisoxazole-3yl)phenol (7e)	S82-83
\$3.35	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(5-chlorofuran-2-yl)-5-phenylisoxazole (7f)	S84-85
\$3.36	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(5-chlorofuran-2-yl)-5-phenyl-4,5- dihydroisoxazole (7g)	S86-87
S3. 37.	¹ H, ¹³ C and DEPT135 NMR spectra of 3-(3-chloro-4-methoxyphenyl)-5- phenylisoxazole (7h)	S88-89
S4.	LC chart at different time intervals	S90-92
S5.	References associated with ESI	S93

S1. EXPERIMENTAL PROCEDURES

S1.a. General Information

All chemicals were obtained from Sigma-Aldrich Company and used as received. ¹H, ¹³C and DEPT NMR spectra were recorded on Brucker-Avance DPX FT-NMR 500 and 400 MHz instruments. Chemical data for protons are reported in parts per million (ppm) downfield from tetramethylsilane and are referenced to the residual proton in the NMR solvent (CDCl₃-7.26 and CD₃OD- 3.28 ppm). Carbon nuclear magnetic resonance spectra (¹³C NMR) were recorded at 125 MHz or 100 MHz: chemical data for carbons are reported in parts per million (ppm, δ scale) downfield from tetramethylsilane and are referenced to the carbon resonance of the solvent (CDCl₃-77 and CD₃OD-50 ppm). ESI-MS and HR-ESIMS spectra were recorded on Agilent 1100 LC-Q-TOF and HR-ESIMS-6540-UHD machines. IR spectra were recorded on Perkin-Elmer IR spectrophotometer. Melting points were recorded on digital melting point apparatus.

S1.b. General procedure for preparation of aldooximes

To the solution of hydroxylamine hydrochloride (1 g, 5.88 m mol) in water (5 ml) was added sodium hydroxide (307 mg, 0.5 m mol) and respective aldehydes (1 mmol) and reaction mixture was stirred for 2-3 hrs at room temperature. After completion of the reaction (monitoring by TLC), if compound precipitated out, was filtered on Buckner funnel or extracted with EtOAc (3×15 ml). The obtained product was taken for next step without further purification (> 90% yield).

S1.c. Optimized procedure for preparation of isoxazole and isoxazolines.

To the stirred solution of aldoximes (100 mg, 1 mmol) in DMF (3 ml) was added N-chlorosuccinimide (1.2 mmol) at room temperature and reaction was stirred for 0.5-1 h. Then, DBU (1 mmol) and alkynes/ alkenes (1.2 mmol) were added and reaction was further stirred for 1-8 h. After completion of the reaction (confirmed by TLC), chilled water (20 ml) was added and product was extracted with EtOAc (3×10 ml). The organic layer was collected, dried on anhydrous sodium sulphate and solvent was evaporated on rotary evaporator to get the crude product. The crude product was purified by silica gel (#100-200) column chromatography using 2 to 20% EtOAc: hexane to get pure isoxazole/ isoxazoline products. For synthesis of chloro-substituted isoxazoles/ isoxazolines, similar procedure was used with the use of 2.2 mmol of NCS instead of 1.2 mmol.

S2. Spectral data of isoxazole and isoxazolines

S2.1. 4-(5-phenylisoxazol-3-yl) phenol (4a):¹

White solid; yield: 80%; m. p. 187-189 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.83 (dd, J = 4, 8 Hz, 2H), 7.76 (d, J = 8 Hz, 2H), 7.47 (m, 3H), 6.95 (d, J = 8 Hz, 2H), 6.78 (s, 1H); ¹³C NMR (CDCl₃ +CD₃OD, 125 MHz): δ 170.0, 162.9, 158.8, 130.2, 128.9, 128.2, 127.2, 125.7, 120.0, 115.7, 97.3; IR (CHCl₃): v_{max} 3433, 2925, 1631, 1450, 1353, 1095, 1017 cm⁻¹; ESI-MS: m/z 238.08 [M+H]⁺; HR-ESIMS: m/z 238.0864 calcd for C₁₅H₁₁NO₂+H⁺ (238.0864).

S2.2. 3, 5-diphenylisoxazole (4b):²

White solid; yield: 75%; m. p. 140-142 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.86 (m, 4H), 7.49 (m, 6H), 6.84 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 168.7, 161.3, 128.6, 128.4, 127.4, 127.3, 127.3, 125.8, 125.1, 124.2, 95.8; IR (CHCl₃): v_{max} 3437, 3114, 2924, 1462, 1257, 1092, 763 cm⁻¹; ESI-MS: *m/z* 222.08 [M+H]⁺; HR-ESIMS: *m/z* 222.0917 calcd for C₁₅H₁₁NO+H⁺ (222.0913).

S2.3. 3-(4-Methoxyphenyl)-5-phenylisoxazole (4c):¹

White solid; yield: 72%; m. p. 114-117 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.80-7.85 (m, 4H), 7.43-7.51 (m, 3H), 6.99 (d, J = 8 Hz, 2H), 6.78 (s, 1H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.1, 162.6, 161.0, 130.1, 129.0, 128.2, 127.5, 125.8, 121.6, 114.3, 97.2, 55.3; IR (CHCl₃): v_{max} 3433, 2925, 1631, 1450, 1353, 1095, 1017 cm⁻¹; IR (CHCl₃): v_{max} 3436, 2922, 2851, 1613, 1450, 1019, 841 cm⁻¹; ESI-MS: m/z 252.09 [M+H]⁺; HR-ESIMS: m/z 252.1021 calcd for C₁₆H₁₃NO₂+H⁺ (252.1019).

S2.4. 5-Phenyl-3-(p-tolyl)isoxazole (4d):³

White solid; yield: 88%; m.p. 110-112 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.82-7.84 (m, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.42-7.50 (m, 3H), 7.28 (d, *J* = 8.0 Hz, 2H), 6.80 (s, 1H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.1, 162.6, 161.0, 130.1, 129.0, 128.2, 127.5, 125.8, 121.6, 114.3, 97.2, 55.3; IR (CHCl₃): v_{max} 3433, 2925, 1631, 1450, 1353, 1095, 1017 cm⁻¹; ESI-MS: *m/z* 236.10 [M+H]⁺; HR-ESIMS: *m/z* 236.1072 calcd for C₁₆H₁₃NO+H⁺ (236.1070).

S2.5. 5-Phenyl-3-(o-tolyl)isoxazole (4e):⁴

White liquid; yield: 87%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.83 (d, J = 8.0 Hz, 1H), 7.66-7.68 (m, 2H), 7.39-7.46 (m, 4H), 7.30 (t, J = 8.0 Hz, 2H), 6.06 (s, 1H), 2.58 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.8, 138.9, 134.4, 131.5, 131.5, 130.1, 128.9, 128.3, 126.4, 126.0, 121.0, 113.0, 22.2; IR (CHCl₃): v_{max} 3433, 2925, 1631, 1450, 1353, 1095, 1017 cm⁻¹; ESI-MS: m/z 236.10 [M+H]⁺; HR-ESIMS: m/z 236.1072 calcd for C₁₆H₁₃NO+H⁺ (236.1070).

S2.6. 4-(5-(4-(tert-butyl) phenyl) isoxazol-3yl) phenol (4f)

White solid; yield 70%; m. p. 167-170 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.74-7.77 (m, 4H), 7.50 (d, J = 12.0 Hz, 2H), 6.95 (d, J = 8.0 Hz, 2H), 6.73(s, 1H), 1.27(s, 9H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.3, 162.6, 157.4, 153.6, 128.4, 125.9, 125.6, 124.7, 121.5, 115.9, 96.8, 34.4, 31.20 IR (CHCl₃): v_{max} 3351, 2963, 2868, 1614, 1435, 1269, 840 cm⁻¹; ESI-MS: *m/z* 294.14 [M+H]⁺; HR-ESIMS: *m/z* 294.1487 calcd for C₁₉H₁₉NO₂+H⁺ (294.1489).

White solid; yield: 70%; m. p. 172-174 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.77-7.78 (m, 4H), 7.32 (d, J = 8.0 Hz, 2H), 6.94 (d, J = 8.0 Hz, 2H), 6.73 (s, 1H), 2.71(q, J = 8.0 Hz, 2H), 1.28 (t, J = 8.0 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 162.6, 157.4, 146.8, 128.5, 128.4, 125.9, 124.9, 121.6, 115.9, 96.8, 28.8, 15.30; IR (CHCl₃): v_{max} 3343, 2962, 2924, 1613, 1439, 1018, 838 cm⁻¹; ESI-MS: m/z 266.11 [M+H]⁺; HR-ESIMS: m/z 266.1183 calcd for C₁₇H₁₅NO₂+H⁺ (266.1176).

S2.8. 1-((3-(p-Tolyl) isoxazol-5-yl) methyl) indoline-2, 3-dione (4h)

Orange solid; yield: 50%; m. p. 167-169 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.62-7.66 (m, 4H), 7.24 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 8.0 Hz, 1H), 7.09 (d, J = 8.0 Hz, 1H), 6.58 (s, 1H), 5.07 (s, 2H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 182.2, 165.7, 162.9, 157.7, 149.7, 140.6, 138.7, 129.7, 126.7, 125.7, 125.4, 124.4, 117.7, 110.7, 101.6, 35.5, 21.4 IR (CHCl₃): v_{max} 3436, 2921, 1736, 1611, 1470, 1020 cm⁻¹; ESI-MS: *m/z* 319.11 [M+H]⁺.

S2.9. 3-(3-(p-Tolyl)isoxazole-5-yl)phenol (4i)

White solid; yield: 80%; m. p. 215-218 °C ; ¹H NMR (400 MHz, CD₃OD, ppm): δ 7.67 (d, J = 8.0 Hz, 2H), 7.21-7.25 (m, 5H), 7.01 (s, 1H), 6.81 (m, 1H), 2.31 (s, 3H); ¹³C NMR (CDCl₃+CD₃OD, 100 MHz): δ 169.7, 162.3, 156.7, 139.6, 129.4, 128.9, 127.6, 125.9, 125.1, 116.8, 116.5, 111.7, 96.9, 20.5; IR (CHCl₃): v_{max} 3439, 3294, 2923, 2853, 1565, 1420, 1185, 686

cm⁻¹; ESI-MS: m/z 252.09 [M+H]⁺; HR-ESIMS: m/z 252.1017 calcd for C₁₆H₁₃NO₂+H⁺ (252.1019).

S2.10. 4-(5-(Hydroxymethyl) isoxazole-3-yl) phenol (4j):⁵

OH

White solid; yield: 65%; m. p. 137-139 °C; ¹H NMR (400 MHz, CD₃OD, ppm): δ 7.56 (d, J = 8.0 Hz, 2H), 6.77 (d, J = 8.0 Hz, 2H), 6.50 (s, 1H), 4.59 (s, 2H); ¹³C NMR (CDCl₃+CD₃OD, 100 MHz): δ 179.2, 172.3, 162.2, 128.2, 120.0, 115.7, 99.5, 55.8; IR (CHCl₃): v_{max} 3435, 2922, 2851, 1705, 1612, 1427, 1019 cm⁻¹; ESI-MS: *m/z* 192.06 [M+H]⁺; HR-ESIMS: *m/z* 192.0656 calcd for C₁₀H₉NO₃+H⁺ (192.0655).

S2.11. 3-(1H-Indol-3-yl)-5-phenylisoxazole (4k)

White solid; yield: 60%; m. p. 194-197 °C ; 1H NMR (400 MHz, CD₃OD, ppm): δ 8.02-8.04 (m, 1H), 7.77-7.83 (m, 4H), 7.35-7.46 (m, 4H), 7.06-7.15(m, 3H); ¹³C NMR (CDCl₃+CD₃OD, 100 MHz): δ 169.0, 159.1, 136.5, 130.0, 128.9, 127.9, 125.9, 125.0, 124.9, 122.7, 121.0, 120.9, 111.5, 106.5, 97.7; IR (CHCl₃): v_{max} 3301, 2922, 1595, 1580, 1441, 1106, 1019, 740 cm⁻¹; ESI-MS: *m/z* 261.09 [M+H]⁺; HR-ESIMS: *m/z* 261.1033 calcd for C₁₇H₁₂N₂O+H⁺ (261.1022).

White solid; yield: 78%; m. p. 79-81°C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.72 (d, J = 8Hz, 1H), 8.14 (d, J = 8Hz, 1H), 7.80-7.88 (m, 3H), 7.46-7.52 (m, 3H), 7.38 (dd, J = 4, 8Hz, 1H), 7.21

(s, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.6, 163.7, 149.7, 148.5, 136.9, 130.2, 129.0, 127.4, 125.8, 124.5, 121.6, 98.3; IR (CHCl₃): v_{max} 3436, 2925, 1593, 1567, 1486, 1460, 1401, 764 cm⁻¹; ESI-MS: *m/z* 223.08 [M+H]⁺.

S2.13. 3, 5-Diphenyl-4, 5-dihydroisoxazole (6a):³

White solid; yield: 85%; m. p. 72-74 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.70 (dd, J = 4.0, 8.0 Hz, 2H), 7.30- 7.42 (m, 8H), 5.75 (dd, J = 11.0, 8.3 Hz, 1H), 3.79(dd, J = 16.6, 11.0 Hz, 1H), 3.35 (dd, J = 16.6, 8.3 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.1, 140.9, 130.2, 129.4, 128.8, 128.2, 126.7, 125.9, 82.6, 43.2; IR (CHCl₃): v_{max} 3433, 2920, 1730, 1446, 1352, 1120, 893, 751, 686 cm⁻¹; ESI-MS: m/z 224.10 [M+H]⁺; HR-ESIMS: m/z 224.1084 calcd for C₁₅H₁₃NO+H⁺ (224.1070).

S2.14. 4-(5-(4-Fluorophenyl)-4, 5-dihydroisoxazol-3-yl)phenol (6b)

White solid; yield: 70%; m. p. 124 – 126 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.54 (d, J = 8.0 Hz, 2H), 7.36 (dd, J = 4, 8.0 Hz, 2H), 7.06 (t, J = 8.0 Hz, 2H), 6.86 (d, J = 8.0 Hz, 2H), 5.67(dd, J = 10.4, 8.6 Hz, 1H), 3.75 (dd, J = 16.6, 10.8 Hz, 1H), 3.28 (dd, J = 16.6, 8.2 Hz, 1H); ¹³C NMR (CDCl₃+CD₃OD, 125 MHz): δ 162.5 (d, ¹ J_{CF} = 245 Hz), 159.0, 156.4, 136.6, 136.5, 128.4, 127.7, 127.6, 120.3, 115.6 (d, ² J_{CF} = 21.2 Hz), 115.5, 81.5, 43.4; IR (CHCl₃): v_{max} 3405, 2921, 2852, 1538, 1493, 1272, 1017 cm⁻¹; ESI-MS: *m*/*z* 258.11 [M+H]⁺; HR-ESIMS: *m*/*z* 258.0955 calcd for C₁₅H₁₂FNO₂+H⁺ (258.0925).

S2.15. 3-(2-Ethoxyphenyl)-5-(4-fluorophenyl)-4,5-dihydroisoxazole (6c)

Colorless liquid; yield: 71%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.79 (d, J = 8.0 Hz, 1H), 7.34- 7.40 (m, 3H), 7.06 (t, J = 8.0 Hz, 2H), 6.98 (t, J = 8.0 Hz, 1H), 6.91(d, J = 8.0 Hz, 1H), 5.66 (t, J = 9.3 Hz, 1H), 4.06 (q, J = 6.9 Hz, 2H), 3.90 (dd, J = 17.4, 10.8 Hz, 1H), 3.48 (dd, J = 17.4, 8.1 Hz, 1H), 1.39 (t, J = 6.9 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 162.5 (d, ¹ $J_{CF} = 245$ Hz), 156.9, 156.0, 137.1, 131.4, 129.4, 127.8, 127.7, 120.7, 118.6, 115.5 (d, ² $J_{CF} = 21.2$ Hz), 112.1, 81.9, 63.9, 45.8, 14.7; IR (CHCl₃): v_{max} 3440, 2979, 2925, 1600, 1510, 1497, 1452, 1245, 1123, 1040 cm⁻¹; ESI-MS: m/z 286.12 [M+H]⁺; HR-ESIMS: m/z 286.1260 calcd for C₁₇H₁₆FNO₂+H⁺ (286.1238).

S2.16. 4-(5-phenyl-4, 5-dihydroisoxazole-3-yl) phenol (6d):7

White solid; yield: 72%; m. p. 140-142 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.59 (d, J = 8.0 Hz, 2H), 7.31- 7.41 (m, 5H), 6.86 (d, J = 8.0 Hz, 2H), 5.71 (dd, J = 10.9, 8.3 Hz, 1H), 3.75 (dd, J = 16.5, 10.9 Hz, 1H), 3.31 (dd, J = 16.6, 8.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.9, 155.1, 139.7, 127.7, 127.5, 127.2, 124.8, 114.8, 81.2, 42.4; IR (CHCl₃): v_{max} 3355, 2924, 2854, 1610, 1455, 1354, 1019, 836 cm⁻¹; ESI-MS: m/z 240.11 [M+H]⁺.

S2.17. 3-(4-Methoxyphenyl)-5-phenyl-4, 5-dihydroisoxazole (6e):²

White solid; yield: 70%; m. p. 95- 97 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.63 (d, J = 12.0 Hz, 2H), 7.33- 7.39 (m, 5H), 6.92 (d, J = 12.0 Hz, 2H), 5.71 (dd, J = 10.9, 8.3 Hz, 1H), 3.84 (s, 3H), 3.76(dd, J = 16.5, 10.9 Hz, 1H), 3.32 (dd, J = 16.5, 8.2 Hz, 1H); IR (CHCl₃): v_{max} 3435, 2954, 2919, 2836, 1609, 1457, 1236, 1178, 1020, 829, 695 cm⁻¹; ESI-MS: m/z 254.11 [M+H]⁺; HR-ESIMS: m/z 254.1176 calcd for C₁₆H₁₅NO₂+H⁺ (254.1176).

S2.18. 5-Phenyl-3-(p-tolyl)-4,5-dihydroisoxazole (6f):³

White solid; yield: 82%; m. p. 94- 96 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.58 (d, J = 8.0, 2H), 7.31-7.41 (m, 5H), 7.21 (d, J = 8.0, 2H), 5.72 (dd, J = 10.9, 8.3 Hz, 1H), 3.76 (dd, J = 16.4, 8.3 Hz, 1H), 3.30 (dd, J = 16.6, 8.2 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.1, 141.0, 140.4, 129.4, 128.7, 128.2, 126.7, 125.9, 82.4, 43.3, 21.4; IR (CHCl₃): v_{max} 3439, 2923, 2853, 1456, 1430, 1238, 823 cm⁻¹; ESI-MS: m/z 238.12 [M+H]⁺; HR-ESIMS: m/z 238.1228 calcd for C₁₆H₁₅NO+H⁺ (238.1226).

S2.19. 5-phenyl-3-(o-tolyl)-4, 5-dihydroisoxazole (6g)

Colorless liquid; yield: 80%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.21-7.42 (m, 9H), 5.69 (dd, J = 10.7, 8.1 Hz, 1H), 3.83 (dd, J = 16.6, 10.8 Hz, 1H), 3.39 (dd, J = 16.6, 8.0 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.0, 141.1, 138.1, 131.6, 129.4, 128.8, 128.8, 128.5, 128.1, 125.8., 125.9, 82.4, 43.3, 21.4; IR (CHCl₃): v_{max} 3435, 2923, 1587, 1494, 1454, 894 cm⁻¹; ESI-MS: m/z 238.12 [M+H]⁺; HR-ESIMS: m/z 238.1235 calcd for C₁₆H₁₅NO+H⁺ (238.1226).

S2.20. 5-(3, 4-Dimethoxyphenyl)-3-phenyl-4, 5-dihydroisoxazole (6h)

White solid; yield: 78%; m. p. 89-91 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.69-7.72 (m, 2H), 7.41-7.43 (m, 3H), 6.93-6.94 (m, 2H), 6.86 (d, *J* = 8Hz, 1H), 5.70 (dd, *J* = 10.7, 8.9 Hz, 1H), 3.89 (s, 6H), 3.75 (dd, *J* = 16.7, 10.9 Hz, 1H), 3.35 (dd, *J* = 16.7, 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.4, 149.2, 149.0, 133.1, 130.1, 129.5, 128.7, 118.5, 111.0, 108.9, 82.7, 55.9, 55.9, 43.0; IR (CHCl₃): v_{max} 3435, 2924, 2851, 1593, 1516, 1261, 1025, cm⁻¹; ESI-MS: *m/z* 284.12 [M+H]⁺; HR-ESIMS: *m/z* 284.1284 calcd for C₁₇H₁₇NO₃+H⁺ (284.1281).

S2.21. 5-(3, 4-Dimethoxyphenyl)-3-(p-tolyl)-4, 5-dihydroisoxazole (6i)

OMe

White solid; yield: 80%; m. p. 84-87 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.59 (d, *J* = 8 Hz, 2H), 7.22 (d, *J* = 8 Hz, 2H), 6.93 (d, *J* = 8Hz, 2H), 6.85 (d, *J* = 12 Hz, 1H), 5.67 (m, 1H), 3.88 (s, 6H), 3.72 (dd, *J* = 16.6, 10.8 Hz, 1H), 3.32 (dd, *J* = 16.6, 8.8 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.3, 149.3, 140.3, 133.3, 129.4, 126.7, 126.6, 118.4, 111.1, 109.0, 82.5, 55.9, 55.9, 43.1, 21.4; IR (CHCl₃): v_{max} 3439, 3294, 2924, 2836, 1517, 1454, 1261, 1138, 1026, 816 cm⁻¹; ESI-MS: *m/z* 298.14 [M+H]⁺; HR-ESIMS: *m/z* 298.1440 calcd for C₁₈H₁₉NO₃+H⁺ (298.1438).

S2.22. 5-(4-fluorophenyl)-3-(4-methoxyphenyl)-4, 5-dihydroisoxazole (6j)

MeC

White solid; yield: 70%; m. p. 103-106 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.61-7.64 (m, 2H), 7.35-7.38 (m, 2H), 7.02-7.08 (m, 2H), 6.91-6.94 (m, 2H), 5.68 (dd, J = 10.8, 8.2 Hz, 1H) 3.84 (s, 3H), 3.74 (dd, J = 16.6, 10.9 Hz, 1H), 3.28 (dd, J = 16.6, 8.2 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 162.5 (d, ¹ $J_{CF} = 245$ Hz), 161.1, 155.7, 136.8, 128.3, 127.7, 127.6, 121.8, 115.6 (d, ² $J_{CF} = 23.2$ Hz), 114.2, 81.6, 55.3, 43.4; IR CHCl₃): v_{max} 3437, 2923, 2880, 1608, 1515, 1244, 1021, 831cm⁻¹; ESI-MS: m/z 272.10 [M+H]⁺; HR-ESIMS: m/z 272.1079 calcd for C₁₆H₁₄FNO₂+H⁺(272.1081).

S2.23. 5-(4-Fluorophenyl)-3-phenyl-4,5-dihydroisoxazole (6k):⁸

White solid; yield: 82%; m. p. 87-89 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.69 (dd, J = 8.0, 4.0 Hz, 2H), 7.36-7.43 (m, 5H), 7.04-7.09 (m, 2H), 5.73 (dd, J = 11.0, 8.2 Hz, 1H), 3.78 (dd, J = 16.7, 11.0 Hz, 1H), 3.31 (dd, J = 16.7, 8.2 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 162.5 (d, ¹ $J_{CF} = 245$ Hz), 156.5, 136.7, 136.7, 130.2, 128.8, 127.7, 127.6, 126.7, 115.6 (d, ² $J_{CF} = 21.2$ Hz), 81.9, 43.2; IR (CHCl₃): v_{max} 3439, 2925, 2854, 1602, 1512, 1446, 1018, 830 cm⁻¹; ESI-MS: m/z 242.09 [M+H]⁺; HR-ESIMS: m/z 242.0982 calcd for C₁₅H₁₂FNO+H⁺ (242.0976).

S2.24. 5-(4-fluorophenyl)-3-(p-tolyl)-4, 5-dihydroisoxazole (6l)

White solid; yield: 85%; m. p. 114-119 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.58 (d, J = 8.0, 2H), 7.35-7.38 (m, 2H), 7.22 (d, J = 8.0, 2H), 7.06-7.08 (m, 2H), 5.70 (dd, J = 10.8, 8.2Hz, 1H), 3.76 (dd, J = 16.6, 10.9 Hz, 1H), 3.29 (dd, J = 16.6, 8.2 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 162.5 (d, ¹ $J_{CF} = 245$ Hz), 156.1, 140.5, 136.8, 129.5, 127.7, 127.7, 126.7, 126.5, 115.6 (d, ² $J_{CF} = 23.2$ Hz), 81.7, 43.3, 21.4; IR (CHCl₃): v_{max} 3439, 2923, 2854, 1515, 1432, 1050, 823 cm⁻¹; ESI-MS: m/z 256.11 [M+H]⁺; HR-ESIMS: m/z 256.1134 calcd for C₁₆H₁₄FNO+H⁺ (256.1132).

S2.25. 5-phenyl-3-(pyridine-2-yl)-4,5-dihydroisoxazole (6m):⁹

Colourless liquid; yield: 80%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.59-8.61 (m, 1H), 8.07 (d, J = 8.0, Hz, 1H), 7.72-7.76 (m, 1H), 7.28-7.42 (m, 6H), 5.80 (dd, J = 10.6, 8.0 Hz, 1H), 3.94 (dd, J = 16.0, 10.7 Hz, 1H), 3.55(dd, J = 16.0, 8.0Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 158.1, 149.3, 140.7, 136.4, 128.7, 128.2, 125.9, 124.3, 121.8, 83.3, 42.5; IR (CHCl₃): v_{max} 3437, 2924, 2853, 1583, 1457, 1019, 772 cm⁻¹; ESI-MS: m/z 225.09 [M+H]⁺.

S2.26. 5-(4-Fluorophenyl)-3-(o-tolyl)-4, 5-dihydroisoxazole (6n)

Colorless liquid; yield: 82%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.33-7.40 (m, 2H), 7.29-7.31 (m, 3H), 7.21-7.25 (m, 1H), 7.07 (t, *J* = 8.0 Hz, 2H), 5.68 (dd, *J* = 10.7, 8.1 Hz, 1H), 3.82 (dd, *J* = 16.6, 10.8 Hz, 1H), 3.34 (dd, *J* = 16.6, 8.0 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 162.5 (d, ¹*J*_{CF}= 245 Hz), 157.0, 138.1, 136.8, 136.8, 131.6, 129.4, 128.8, 128.4, 127.6, 127.6, 125.8, δ 115.6 (d, ²*J*_{CF}= 22 Hz), 80.9, 45.7, 22.9; IR (CHCl₃): v_{max} 3436, 2923, 1604, 1454,

1224, 1019 cm⁻¹; ESI-MS: m/z 256.11 [M+H]⁺; HR-ESIMS: m/z 256.1132 calcd for C₁₆H₁₄FNO+H⁺ (256.1132).

White solid; yield: 72%; m. p. 96-99 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.63 (d, J = 12.0 Hz, 2H), 6.84-6.94 (m, 4H), 6.83 (d, J = 8.0 Hz, 1H), 5.65(dd, J = 10.6, 8.9 Hz, 1H), 3.88(s, 6H), 3.84(s, 3H), 3.70 (dd, J = 16.6, 10.8 Hz, 1H), 3.31 (dd, J = 16.6, 8.8 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 161.1, 155.9, 149.3, 149.0, 133.4, 128.2, 122.1, 118.4, 114.1, 111.1, 108.9, 82.3, 55.9, 55.3, 43.3;IR (CHCl₃): v_{max} 3439, 2929, 2837, 1607, 1516, 1257, 1024, 1024 cm⁻¹; ESI-MS: m/z 314.13 [M+H]⁺; HR-ESIMS: m/z 314.1387 calcd for C₁₈H₁₉NO₄+H⁺ (314.1387).

S2.28. 5-(3, 4-Dimethoxyphenyl)-3-(o-tolyl)-4, 5-dihydroisoxazole (6p)

Colorless liquid; yield: 78%; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.23-7.35 (m, 4H), 6.92-6.95 (m, 2H), 6.86 (d, J = 8Hz, 1H), 5.65 (dd, J = 10.6, 8.5 Hz, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 3.79 (dd, J = 16.6, 10.8 Hz, 1H), 3.39 (dd, J = 16.6, 8.4 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 157.2, 149.2, 148.9, 138.0, 133.3, 131.6, 129.4, 128.8, 128.5, 125.8, 118.3, 111.1, 108.8, 81.5, 55.9, 55.9, 45.6, 23.0; IR (CHCl₃): v_{max} 3348, 2923, 1516, 1261, 1138, 1025, 759 cm⁻¹; ESI-MS: m/z 298.14 [M+H]⁺; HR-ESIMS: m/z 298.1453 calcd for C₁₈H₁₉NO₃+H⁺ (298.1438).

S2.29. 3-(1H-Indol-3yl)-5-phenyl-4, 5-dihydroisoxazole (6q)

White solid; yield: 63%; m. p. 168-171 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.39 (s, 1-NH), 8.30 (d, J = 8.0, Hz, 1H), 7.25-7.45 (m, 9H), 5.67 (dd, J = 10.6, 8.0 Hz, 1H), 3.82 (dd, J = 16.0, 10.7 Hz, 1H), 3.38 (dd, J = 16.0, 8.0Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz): δ 152.4, 141.3, 136.5, 128.7, 128.0, 125.9, 125.8, 124.6, 123.6, 122.6, 121.5, 111.2, 107.7, 80.8, 44.6; IR (CHCl₃): v_{max} 3414, 2922, 1595, 1433, 1019, 743 cm⁻¹; ESI-MS: *m/z* 263.11 [M+H]⁺; HR-ESIMS: *m/z* 263.1184 calcd for C₁₇H₁₄N₂O+H⁺ (263.1179).

S2.30. 2-Chloro-4-(5-phenylisoxazole-3-yl)phenol (7a)

White solid; yield: 88%; m.p. 193-196 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.89 (d, J = 4.1, Hz, 1H), 7.82-7.84 (m, 2H), 7.68-7.71 (m, 1H), 7.47-7.50 (m, 3H), 7.13 (d, J = 8 Hz, 1H), 6.77(s, 1H), 5.78 (s, 1H); ¹³C NMR (CDCl₃+CD₃OD, 125 MHz): δ 170.3, 161.9, 154.4, 130.3, 128.9, 128.3, 127.1, 126.3, 125.7, 121.0, 116.7, 97.2; IR (CHCl₃): v_{max} 3346, 2922, 2851, 1594, 1422, 1019 cm⁻¹; ESI-MS: *m/z* 272.04 [M+H]⁺; HR-ESIMS: *m/z* 272.0481 calcd for C₁₅H₁₀ClNO₂+H⁺ (272.0473).

S2.31. 2-Chloro-4-(5-(p-tolyl)isoxazole-3-yl)phenol (7b)

White solid; yield: 86 %; m. p. 184-186 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.88 (d, J = 4.1, Hz, 1H), 7.73 (s, 1H), 7.67-7.71 (m, 2H), 7.29 (d, J = 8.0, Hz, 2H), 7.12 (d, J = 8.0, Hz, 1H), 6.71(s, 1H), 5.78 (s, 1H), 2.42(s, 3H); ¹³C NMR (CDCl₃+CD₃OD, 125 MHz): δ 170.5, 161.8, 154.3, 140.7, 129.6, 126.3, 125.6, 124.3, 121.3, 121.0, 116.7, 96.6, 21.32; IR (CHCl₃): v_{max} 3128, 2922, 2851, 1602, 1425, 1300, 946, 779 cm⁻¹; ESI-MS: *m/z* 286.06 [M+H]⁺; HR-ESIMS: *m/z* 286.0630 calcd for C₁₆H₁₂ClNO₂+H⁺ (286.0629).

S2.32. 2-Chloro-4-(5-(4-ethylphenyl) isoxazole-3-yl) phenol (7c)

White solid; yield: 87%; m. p. 128-130 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.87 (d, J = 2.0 Hz, 1H), 7.74 (d, J = 8.2 Hz, 2H), 7.68 (dd, J = 8.5, 2.1 Hz, 1H), 7.31 (d, J = 8.2 Hz, 2H), 7.12 (d, J = 8.5 Hz, 1H), 6.71(s, 1H), 5.88 (s, OH), 2.71(q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz): δ 170.7, 161.5, 152.9, 146.9, 128.5, 127.6, 127.0, 125.9, 124.8, 122.7, 120.6, 116.7, 96.6, 28.8, 15.3; IR (CHCl₃): v_{max} 3136, 2925, 2851, 1613, 1430, 1301, 1220, 1058 cm⁻¹; ESI-MS: *m/z* 300.07 [M+H]⁺; HR-ESIMS: *m/z* 300.0793 calcd for C₁₇H₁₄ClNO₂+H⁺ (300.0786).

S2.33. 2-Chloro-4-(5-phenyl-4,5-dihydroisoxazol-3-yl)phenol (7d)

White solid; yield: 90%; m. p. 140 – 142 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.68 (d, J = 1.9, Hz, 1H), 7.50(dd, J = 8.5, 1.9.0 Hz, 1H), 7.39-7.30 (m, 5H), 7.04 (d, J = 8.5 Hz, 1H), 6.22(s, OH), 5.73 (dd, J = 10.9, 8.3 Hz, 1H), 3.72(dd, J = 16.6, 11.0 Hz, 1H), 3.29 (dd, J = 16.6, 8.2 Hz, 1H); ¹³C NMR (CDCl₃+CD₃OD, 125 MHz): δ 155.5, 154.5, 140.5, 128.7, 128.4, 128.2, 126.4, 125.7, 121.6, 120.9, 116.6, 82.4, 43.1; IR (CHCl₃): v_{max} 3344, 2919, 1603, 1510, 1338, 1292, 1206, 1057 cm⁻¹; ESI-MS: *m/z* 274.04 [M+H]⁺; HR-ESIMS: *m/z* 274.0639 calcd for C₁₅H₁₂CINO₂+H⁺ (274.0629).

S2.34. 2-Chloro-4-(5-(4-fluorophenyl)-4,5-dihydroisoxazole-3yl)phenol (7e)

White solid; yield: 92%; m. p. 180 – 182 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.69 (d, J = 1.9 Hz, 1H), 7.51 (dd, J = 8.5, 1.9 Hz, 1H), 7.35 (dd, J = 8.6, 5.3 Hz, 2H), 7.06 (t, J = 8.6, 3H) 5.80 (s, OH), 5.71 (dd, J = 10.8, 8.3 Hz, 1H), 3.72 (dd, J = 16.6, 10.9 Hz, 1H), 3.25 (dd, J = 16.6, 8.2 Hz, 1H); ¹³C NMR (CDCl₃+CD₃OD, 125 MHz): δ 161.5, 155.4, 154.6, 136.3, 128.4, 127.6, 127.5, 121.5, 120.9, 116.6, 115.6, 115.4, 81.7, 43.1; IR (CHCl₃): v_{max} 3364, 2923, 2852, 1606, 1512, 1355, 1225, 834 cm⁻¹; ESI-MS: *m/z* 292.05 [M+H]⁺; HR-ESIMS: *m/z* 292.0563 calcd for C₁₅H₁₁ClFNO₂+H⁺ (292.0545).

S2.35. 3-(3-Chloro-4-methoxyphenyl)-5-phenylisoxazole (7f)

White solid; yield: 80%; m. p. 120-122 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 8.06 (d, J = 8.6 Hz, 2H), 7.86 (d, J = 8.6 Hz, 2H), 7.53 (m, 3H), 7.04(d, J = 8.6 Hz, 2H), 3.88(s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 163.9, 161.1, 160.3, 130.5, 129.6, 128.8, 128.7, 127.4, 126.6, 126.5,119.8 114.2, 104.4, 55.3; IR (CHCl₃): v_{max} 3344, 2919, 1603, 1510, 1338, 1292, 1206, 1057 cm⁻¹; ESI-MS: m/z 286.06 [M+H]⁺, HR-ESIMS: m/z 286.0632 calcd for C₁₆H₁₂ClNO₂+H⁺ (286.0629).

White solid; yield: 90%; m. p. 115-117 °C ; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.82 (dd, J = 7.6,1.7 Hz, 2H), 7.56-7.44 (m, 3H), 6.95 (d, J = 3.5 Hz, 1H), 6.77(s, 1H), 6.33(d, J = 3.4, Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 170.4, 154.6, 143.9, 138.3, 130.4, 129.0, 125.9, 112.04, 108.5, 96.7; IR (CHCl₃): v_{max} 3437, 3126, 2921, 1521, 1418, 1018, 759 cm⁻¹; ESI-MS: *m/z* 246.02 [M+H]⁺; HR-ESIMS: *m/z* 246.0314 calcd for C₁₃H₈ClNO₂+H⁺ (246.0316).

S2.37. 3-(5-chlorofuran-2-yl)-5-phenyl-4, 5-dihydroisoxazole (7h)

White solid; yield: 60%; m. p. 99- 101 °C; ¹H NMR (400 MHz, CDCl₃, ppm): δ 7.30-7.40 (m, 5H), 6.72 (d, J = 3.5 Hz, 1H), 6.27 (d, J = 3.5 Hz, 1H) 5.71(dd, J = 10.9, 8.2 Hz, 1H), 3.71(dd, J = 16.7, 11.0 Hz, 1H), 3.27(dd, J = 16.7, 8.2 Hz, 1H), ¹³C NMR (CDCl₃, 125 MHz): δ 147.7, 144.2, 140.2, 138.9, 128.8, 128.4, 125.8, 113.7, 108.6, 82.4, 42.6; IR (CHCl₃): v_{max} 3436, 2922, 1618, 1433, 1017cm⁻¹; ESI-MS: m/z 248.04 [M+H]⁺; HR-ESIMS: m/z 248.0480 calcd for C₁₃H₁₀CINO₂+H⁺(248.0473).

S3. Scanned copies of ¹H, ¹³C and DEPT135 NMR spectra's of isoxazoles/ isoxazolines

S3.1. ¹H, ¹³C and DEPT135 NMR spectra of 4-(5-phenylisoxazol-3-yl) phenol (4a)

Page S18

S3.2. ¹H, and ¹³C NMR spectra of spectra's of 3,5-diphenylisoxazole (4b)

Page S20

S3.3. ¹H, ¹³C and DEPT135 NMR spectra of 3-(4-methoxyphenyl)-5-phenylisoxazole (4c)

Page S21

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

																			 02.03
-		1					1		1	1	1	1	1		1	1	1	 -	_
170	160	150	14	10	130	1	120	110	100	90	80	70	60	50	40	30	20	10	0

S3.6. ¹H, ¹³C and DEPT135 NMR spectra of 4-(5-(4-(tert-butyl) phenyl) isoxazol-3yl) phenol (4f)

Page S27

																							_
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	0

S3.7. ¹H, ¹³C and DEPT135 NMR spectra of 4-(5-(4-ethylphenyl) isoxazole-3-yl) phenol (4g)

Page S29

S3.8. ¹H, ¹³C and DEPT135 NMR spectra of 3-((3-(p-tolyl) isoxazole-5yl) methyl)-1H-indene-1,2(3H)-dione (**4h**)

Page S31

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

S3.9. ¹H, ¹³C and DEPT135 NMR spectra of 3-(3-(p-tolyl) isoxazole-5-yl) phenol (4i)

220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	----	----	----	----	----	----	----	----	----	---	-----	--

S3.10.¹H, ¹³C and DEPT135 NMR spectra of 4-(5-(hydroxymethyl) isoxazole-3-yl) phenol (4j)

Page S35

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

S3.12, ¹H, ¹³C and DEPT135 NMR spectra of 5-phenyl-3-(pyridine-2-yl) isoxazole (4I)

S3.13.¹H, ¹³C, and DEPT135 spectra of 3,5-diphenyl-4,5-dihydroisoxazole (6a)

Page S41

S3.14.¹H, ¹³C, and DEPT135 spectra of 4-(5-(4-fluorophenyl)-4, 5-dihydroisoxazol-3-yl) phenol (6b)

Page S43

S3.15.¹H, ¹³C, and DEPT135 spectra of 3-(2-ethoxyphenyl)-5-(4-fluorophenyl)-4,5-dihydroisoxazole (6c)

Page S45

S3.16.¹H, ¹³C, and DEPT135 spectra of 4-(5-phenyl-4, 5-dihydroisoxazole-3-yl) phenol (6d)

S3.17. ¹H, ¹³C and DEPT135 NMR spectra of 3-(4-methoxyphenyl)-5-phenyl-4, 5-dihydroisoxazole (6e)

S3.18. ¹H, ¹³C and DEPT135 NMR spectra of 5-phenyl-3-(p-tolyl)-4, 5-dihydroisoxazole (6f)

S3.19. ¹H, ¹³C, and DEPT135 NMR spectra of 5-phenyl-3-(o-tolyl)-4, 5-dihydroisoxazole (6g)

Page S52

S3.20. ¹H, ¹³C, and DEPT135 NMR spectra of 5-(3, 4-dimethoxyphenyl)-3-phenyl-4,5-dihydroisoxazole (**6h**)

Page S54

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40

S3.21. ¹H, ¹³C and DEPT135 NMR spectra of 5-(3,4-dimethoxyphenyl)-3-(p-tolyl)-4,5-dihydroisoxazole (**6i**)

Page S56

S3.22. ¹H, ¹³C and DEPT135 NMR spectra of 5-(4-fluorophenyl)-3-(4-methoxyphenyl)-4, 5-dihydroisoxazole (**6j**)

Page S58

S3.23. ¹H, ¹³C and DEPT135 NMR spectra of 5-(4-fluorophenyl)-3-phenyl-4, 5-dihydroisoxazole (6k)

Page S60

S3.24. ¹H, ¹³C and DEPT135 NMR spectra of 5-(4-fluorophenyl)-3-(p-tolyl)-4, 5-dihydroisoxazole (6l)

Page S62

S3.25. ¹H, ¹³C and DEPT135 NMR spectra of 5-phenyl-3-(pyridine-2-yl)-4, 5-dihydroisoxazole (6m)

Page S64

S3.26. ¹H, ¹³C and DEPT135 NMR spectra of 5-(4-fluorophenyl)-3-(o-tolyl)-4, 5-dihydroisoxazole (6n)

Page S66

S3.27. ¹H, ¹³C and DEPT135 NMR spectra of 5-(3, 4-dimethoxyphenyl)-3-(4-methoxyphenyl) isoxazole (**60**)

Page S68

S3.28. ¹H, ¹³C and DEPT135 NMR spectra of 5-(3, 4-dimethoxyphenyl)-3-(o-tolyl)-4,5-dihydroisoxazole (**6p**)

Page S70

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

S3.29. ¹H, ¹³C and DEPT135 NMR spectra of 3-(1H-indol-3yl)-5-phenyl-4, 5-dihydroisoxazole (6q)

S3.30. ¹H, ¹³C and DEPT135 NMR spectra of 2-chloro-4-(5-phenylisoxazole-3-yl) phenol (7a)

Page S74

16-may-c13-shabbir SS-660

240	230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40

S3.31. ¹H, ¹³C and DEPT135 NMR spectra of 2-chloro-4-(5-(p-tolyl) isoxazole-3-yl)phenol (7b)

Page S76

· ·	-																						
	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

S3.32. ¹H, ¹³C and DEPT135 NMR spectra of 2-chloro-4-(5-(4-ethylphenyl) isoxazole-3-yl) phenol (7c)

S3.33. ¹H, ¹³C and DEPT135 NMR spectra of 2-chloro-4-(5-phenylisoxazol-3-yl) phenol (7d)

Page S80

S3. 34. ¹H, ¹³C and DEPT135 NMR spectra of 2-chloro-4-(5-(4-fluorophenyl)-4, 5-dihydroisoxazole-3yl)phenol (**7e**)

Page S82

S3. 35. ¹H, ¹³C and DEPT135 NMR spectra of 3-(5-chlorofuran-2-yl)-5-phenylisoxazole (7f)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

S3. 36. ¹H, ¹³C and DEPT135 NMR spectra of 3-(5-chlorofuran-2-yl)-5-phenyl-4, 5-dihydroisoxazole (7g)

S3. 37. ¹H, ¹³C and DEPT135 NMR spectra of 3-(3-chloro-4-methoxyphenyl)-5-phenylisoxazole (7h)

Page S88

c13-shabbir SS-712

, 70

S4. LCMS chromatogram at different time intervals.

LC-ESI-MS/MS analysis was carried out on Agilent Triple-Quad LC-MS/MS system (model 6410). Liquid chromatography analyses were carried out using an Agilent 1260 Infinity (Agilent, USA) quaternary pump equipped with an autosampler, column heater and online degasser. A Chromolith C_{18} (Merck, Germany) column (55 x 4.6 mm) was used at 30 °C temperature and the injection volume was 10 µl. The elution was carried out with binary solvent system consisting of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B) at a constant flow-rate of 0.5 ml/min. The gradient elution was used, as depicted in Table S4-a.

Time	Solvent A (water –	Solvent B (acetonitrile)	Flow rate (ml/min)
	0.1% formic acid)		
0	80	20	0.5
8	40	60	0.5
15	40	60	0.5
17	80	20	0.5
20	80	20	0.5

 Table S4-a.
 Gradient details used in LC-ESI-MS/MS analysis

Other instrument parameters are listed in Table S4-b.

 Table S4-b.
 Instrument parameters during LC-ESI-MS/MS analysis

Source par	ameters	Autosampler para	ameters	Quaternary pump parameters				
Gas Temp.	300 °C	Injection volume	10 µl	Run time	15 min			
Gas fgelow	8 L/min	Eject speed	200 µl/min	Flow rate	0.5			
					ml/min			
Nebulizer	50 psi	Draw speed	200 µl/min	Elution	Gradient*			
pressure								
Capillary	3000 v							
voltage								
Cell Acc (v)	7 v							

* Gradient system is provided in Table S4-a

S5. References associated with ESI

- M. A. Weidner-Wells, T. C. Henninger, S. A. Fraga-Spano, C. M. Boggs, M. Matheis, D. M. Ritchie, D. C. Argentieri, M. P. Wachter and D. J. Hlasta, *Bioorg. Med. Chem. Lett.* 2004, 14, 4307–4311.
- 2. S. Minakata, S. Okumura, T. Nagamachi and Y. Takeda, Org. Lett. 2011, 13, 2966-2969.
- 3. A. Yoshimura, K. R. Middleton, A. D. Todora, B. J. Kastern, S. R. Koski, A. V. Maskaev and V. V. Zhdankin, *Org. Lett.* 2013, **15**, 4010-4013.
- 4. R. Harris and J. Huppatz, Aust. J. Chem. 1977, 30, 2225-2240.
- 5. C. Shen, Y. Zhang, Y. Gan, T. Zhao and Q. Gu, *Lett. Org. Chem.* 2011, **8**, 278-281.
- 6. S. Tang, J. He, Y. Sun, L. He and X. She, Org. Lett. 2009, 11, 3982-3985.
- 7. M. Boruah and D. Konwar, *Synth. Commun.* 2012, **42**, 3261-3268.
- A. Yoshimura, C. Zhu, K. R. Middleton, A. D. Todora, B. J. Kastern, A. V. Maskaev and V. V. Zhdankin, *Chem. Commun.* 2013, 49, 4800-4802.
- 9. S. Kanemasa, H. Matsuda, A. Kamimura and T. Kakinami, *Tetrahedron* 2000, **56**, 1057-1064.