Improved antifouling property and blood compatibility of 3methacryloxypropyl trimethoxysilane - based zwitterionic copolymer modified composite membranes via in situ post-crosslinking copolymerization

Tao Xiang^a, Ting Lu^a, Rui Wang^a, Cheng Wang^a, Shu-Dong Sun^a, Hong-Bo He^{b,*}, Chang-

Sheng Zhao^{a,c,**}

^a College of Polymer Science and Engineering, State Key Laboratory of Polymer

Materials Engineering, Sichuan University, Chengdu 610065, China

^b West China Hospital, Sichuan University, Chengdu 610041, China

^c National Engineering Research Center for Biomaterials, Sichuan University,
Chengdu 610064, China

*Corresponding author.

E-mail address: hxhehongbo@hotmail.com (*) or zhaochsh70@163.com (**)

Tel.: +86-28-85400453; Fax: +86-28-85405402.

Supporting Information

Figure S1. Thermogravimetry (TG) and derivative thermogravimetry (DTG) curves for the M-Si/PSBMA-2 membrane before and after compacting with water at the pressure 0.05 MPa for 24 h.

Figure S2. XPS spectra of wide scan for the M-Si/PSBMA-1~3 membranes.

Figure S3. Water contact angles of glass slide from 0 to 200 s.