Redesigning the synthesis of Vidarabine *via* a multienzymatic reaction catalyzed by immobilized nucleoside phosphorylases

Immacolata Serra, Simona Daly, Andrès R. Alcàntara, Davide Bianchi, Marco Terreni and Daniela Ubiali

E-factor calculations

Final conversion: 10.42 g (78%)

Final yield: 7.04 g (53%)

Purity: 98.7 %

FINAL AMOUNT OF araA (REAL) = 6.99 g.

CALCULATIONS

As described by Maity, P.; Gopinath, C. S.; Bhaduri, S.; Lahiri, G. K. Applications of a high performance platinum nanocatalyst for the oxidation of alcohols in water. Green Chem. 2009, 11, 554-561.

1.-BASED ON ANALYTICAL YIELD (78%), WHITOUT CONSIDERING NEITHER ENZYME WASTE NOR SOLVENTS.

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 10,42 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1.49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) = 9,13

Total amount of waste = 16.39 + 9,13 = 25.52 g

E-FACTOR: (25.52/10.42) = 2,45

2.-BASED ON ANALYTICAL YIELD (78%), CONSIDERING ENZYME WASTE but NOT SOLVENTS.

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 10,42 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1.49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) + 102 g (CpUP) + 146 g (AhNP) = 257,13

Total amount of waste = 16.39 + 257,13 = 273.52 g

E-FACTOR: (273.52/10.42) = 26,25

3.-BASED ON ANALYTICAL YIELD (78%), CONSIDERING SOLVENTS

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 10,42 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1.49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) + 2000 g (water, 2L) + 944 g (DMF, final 50%, density = 0.944) = 2.953.13

Total amount of waste = 16.39 + 2,953.13 = 2,969,52 g

E-FACTOR: (2,969.52/10.42) = 285

4.-BASED ON ANALYTICAL YIELD (78%), CONSIDERING ENZYME WASTE and SOLVENTS.

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 10,42 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1,49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) + 102 g (CpUP) + 146 g (AhNP) + 2000 g (water, 2L) + 944 g (DMF, final 50%, density = 0.944) = 3,201.13

Total amount of waste = 16.39 + 3,201.13 = 3,217.52 g

E-FACTOR: (3,217.52/10.42) = 308,8

CALCULATIONS

1.-BASED ON FINAL YIELD (53%), WHITOUT CONSIDERING NEITHER ENZYME WASTE NOR SOLVENTS.

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 6.99 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1,49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) = 9,13

Total amount of waste = 16.39 + 9.13 = 25.52 g

E-FACTOR: (25.52/6.99) = 3.65

2.-BASED ON FINAL YIELD (53%), CONSIDERING ENZYME WASTE but NOT SOLVENTS.

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 6.99 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1.49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) + 102 g (CpUP) + 146 g (AhNP) = 257,13

Total amount of waste = 16.39 + 257.13 = 273.52 g

E-FACTOR: (273.52/6.99) = 39.13

3.-BASED ON FINAL YIELD (53%), CONSIDERING SOLVENTS

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 6.99 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1,49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) + 2000 g (water, 2L) + 944 g (DMF, final 50%, density = 0.944) = 2.953.13

Total amount of waste = 16.39 + 2,953.13 = 2,969,52 g

E-FACTOR: (2,969.52/6.99) = 424.8

4.-BASED ON FINAL YIELD (53%), CONSIDERING ENZYME WASTE and SOLVENTS.

Total amounts of reactants: 24.42 g (araU) + 6.76 g (A) = 31.18 g

Total amounts of product (araA) = 10,42 g

Amount of waste from non converted reagents: 14.9 g (araU) + 1,49 g(A) = 16.39 g

Amount of waste from byproducts: 4.37 g (U) + 4.76 g (Pi) + 102 g (CpUP) + 146 g (AhNP) + 2000 g (water, 2L) + 944 g (DMF, final 50%, density = 0.944) = 3,201.13

Total amount of waste = 16.39 + 3,201.13 = 3,217.52 g

E-FACTOR: (3,217.52/6.99) = 460.3

CHEMICAL SYNTHESIS, according to Glaudemans, C. P. J.; Fletcher, J. Journal of Organic Chemistry 1963, 28, 3004–3006.

1.-FIRST STEP

1.1.-WHITOUT CONSIDERING SOLVENTS.

Total amounts of reactants: 10 g (2,3 5-tri-O-benzyl-1-O-p-nitrobenzoyl-D-arabinofuranose) +9 g (N-benzoyladenine) + 0.62 g HCl (estimated, from 97% yield of theoretical 0.0175 mol) += 19.62 g

Total amounts of product $(9-(2,3,5-\text{Tri-}O-\text{benzyl-}(\beta-D-\text{arabinofuranosyl})\text{adenine}) = 5,2$

Amount of waste:

• non converted reagents: 0.3 g (non converted substrate)

- 2.84 g (p-nitrobenzoic acid)
- 29 g (molecular sieve, not considered)
- 15.25 g (Ba(OMe)₂)

Total amount of waste = 0.3 + 2.84 + 15.25 = 18.39 g

E-FACTOR: (18.39/5.2) = 3.5

1.2.-CONSIDERING SOLVENTS.

Total amounts of reactants: 10 g (2,3 5-tri-O-benzyl-1-O-p-nitrobenzoyl-D-arabinofuranose) +9 g (N-benzoyladenine) + 0.62 g HCl (estimated, from 97% yield of theoretical 0.0175 mol) += 19.62 g

Total amounts of product $(9-(2,3,5-\text{Tri-}O-\text{benzyl-}(\beta-D-\text{arabinofuranosyl})\text{adenine}) = 5,2$

Amount of waste:

- non converted reagents: 0.3 g (non converted substrate)
- 2.84 g (p-nitrobenzoic acid)
- 29 g (molecular sieve, not considered)
- 15.25 g (Ba(OMe)₂)
- SOLVENTS:
 - \circ CH₂Cl₂ = 515 ml x 1.33 g/ml = 685 g
 - \circ C₆H₁₂ = 450 ml x 0.78 g/ml = 351g

Total amount of waste = 0.3 + 2.84 + 15.25 + 685 + 351 = 1,046.5 g

E-FACTOR: (1,046.5/5.2) = 201.2

2.-SECOND STEP

2.1.-WHITOUT CONSIDERING SOLVENTS.

Total amounts of reactants: 0.3 g (9-(2,3,5-tri-O-benzyl β -*D*-arabinofuranosyl)adenine) + 0.3 g PdCl₂ = 0.6 g

Total amounts of product $(9-(\beta-D-arabinofuranosyl)adenine) = 0.148 g$

Amount of waste: 0.6-0.148 = 0.452

E-FACTOR: (0.452/0.148) = 3.05

2.2.- CONSIDERING SOLVENTS

Total amounts of reactants: 0.3 g (9-(2,3,5-tri-O-benzyl β -*D*-arabinofuranosyl)adenine) + 0.3 g PdCl₂ = 0.6 g

Total amounts of product $(9-(\beta-D-arabinofuranosyl)adenine) = 0.148 g$

Amount of waste:

- SOLVENTS:
 - \circ CH₃OH = 200 ml x 0.7918 g/ml = 158.4 g
 - \circ H₂O = 12 ml x 1 g/ml = 12g

(0.6-0.148 = 0.452)+158.4+12=171 g

E-FACTOR: (171/0.148) = 1155

- 3.- OVERALL DATA: Considering both steps
- 3.1.- WITHOUT CONSIDERING SOLVENTS

Mean value: (2 +3.05)/2 = 2.5

3.2.- CONSIDERING SOLVENTS

Mean value: (201,2+1155)/2 = 678

Figure S1 Chromatogram of the purified araA (from 2 L reaction, see Table 5).

Figure S2 ¹H NMR spectrum of the purified araA (from 2 L reaction, see Table 5).

Figure S3 ESI-Q-Tof-MS spectrum of the purified araA (from 2 L reaction, see Table 5).

