Supplementary Information

A real-time colorimetric and ratiometric fluorescent probe for rapid detection of SO₂ derivatives in living cells based on a near-infrared benzopyrylium dye

Wenqiang Chen,^a Xingjiang Liu,^a Song Chen^b, Xiangzhi Song^{*ac} and Jian Kang^{*d}

^aCollege of Chemistry & Chemical Engineering, Central South University, 410083 Changsha, Hunan Province, P. R. China. Fax: +86-731-88836954; Tel: +86-731-88836954; E-mail: xzsong@csu.edu.cn;

^bCollege of Pharmacy, Qiqihar Medical University, 161006 Qiqihar, Heilongjiang Proviance, P. R. China;

^cState Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024 Dalian, Liaoning Province, P. R. China;

^dThe Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan Province, P. R. China.

Figure S1. Uv-vis absorption spectra of Probe 1 in different solvents.

Figure S2. Fluorescence spectra of Probe 1 in different solvents.

Figure S3. Uv-vis absorption spectra of Probe 2 in different solvents.

Figure S4. Fluorescence spectra of Probe 2 in different solvents.

Figure S5. Photodegradation of Probe 1 in CH_3CN under the continuous irradiation with a 300 mW, 635 nm continuous wave laser. The distance between the light source and the sample is 10 cm.

Figure S6. Photodegradation of Probe 2 in CH_3CN under the continuous irradiation with a 300 mW, 635 nm continuous wave laser. The distance between the light source and the sample is 10 cm.

Figure S7. Photodegradation of Probe 1 in CH_3CN under the continuous irradiation with a 300 mW, 635 nm CW laser. F and F_0 are the fluorescent intensities of the sample and reference, respectively. The distance between the light source and the sample is 10 cm. The optical density of the sample is 0.3.

Figure S8. Fluorescence spectra changes of the Probe 1 (5.0 μ M) in presence of Na₂SO₃ (0.0-30.0 μ M) in HEPES buffer (20.0 mM, pH =7.4).

Figure S9.The line relationship between the fluorescence ratio (I_{489}/I_{690}) of Probe 1 (5.0 μ M) and the concentration of HSO₃⁻ (0.0–22.5 μ M) in HEPES buffer (20.0 mM, pH = 7.4).

Figure S10. Time-dependent Fluorescence spectral changes of Probe 1 (5.0 μ M) in HEPES buffer (20.0 mM, pH =7.4).

Figure S11. Emission spectra of Probe $2(5.0 \ \mu M)$ upon the addition of different

concentrations of NaHSO₃ (0.0-30.0 μ M) in HEPES buffer.

Figure S12. Time-dependent fluorescence intensity at 502 nm of Probe **2** (5.0 μ M) upon the addition of different concentrations of NaHSO₃ (5.0, 15.0, and 30.0 μ M) in HEPES buffer (20.0 mM, pH = 7.4).

Figure S13. The Uv-vis absorption spectra of Probe **2** (5.0 μ M) in the absence/presence of NaHSO₃ (30.0 μ M).

Figure S14. Mass spectrum of the Probe 1 (20.0 μ M) with NaHSO₃ (100.0 μ M).

Figure S15. Fluorescence spectra of Probe **1** (5.0 μ M) in the presence of various analytes (25.0 μ M for F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, NO₂⁻, NO₃⁻, SO₄²⁻, S₂O₃²⁻, AcO⁻, HS⁻, Mg²⁺, Zn²⁺, Ca²⁺ and K⁺; 50.0 μ M for H₂O₂ and NaClO; 0.5 mM for Cys and Hcy; 4.0 mM for GSH) in HEPES buffer (20.0 mM, pH =7.4).

Figure S16. Interfering effect of various tested analytes on the fluorescence intensity of Probe 1 (5.0 μ M) in response to HSO₃⁻ (25.0 μ M) in HEPES buffer (20.0 mM, pH = 7.4). $\lambda_{ex} = 450$ nm. R= I₄₈₉/I₆₉₀. Bars: 25.0 μ M for (1)blank, (2) Br⁻, (3) F⁻, (4) I⁻, (5) Cl⁻, (6) S₂O₃²⁻, (7) AcO⁻, (8) SO₄²⁻, (9) NO₂⁻, (10) NO₃⁻, (11) N₃⁻, (12) HS⁻, (13)

Mg²⁺, (14) Zn²⁺; 50.0 µM for (15) H₂O₂, (16) NaClO; 0.5 mM for (17) Cys, (18) Hey; 4.0 mM for (19) GSH.

Figure S17. Fluorescence spectra of Probe **2** in the presence of various analytes (30.0 μ M for F⁻, Cl⁻, Br⁻, I⁻, N₃⁻, CN⁻, NO₂⁻, NO₃⁻, SO₄²⁻, S₂O₃²⁻, HS⁻, Mg²⁺, Zn²⁺ and Ca²⁺; 50.0 μ M for H₂O₂ and NaClO; 0.5 mM for Cys and Hcy; 4.0 mM for GSH) in HEPES buffer (20.0 mM, pH =7.4).

Figure S18. The reaction of SO_2 donor in the presence of Cys in pH 7.4 buffered solution.

Figure S19. Time-dependent Uv-vis absorption spectra of SO₂ donor (40.0 μ M) in the presence of Cys (400.0 μ M) in HEPES buffer (20.0 mM, pH = 7.4).

Figure S20. Fluorescence spectra of Probe 1 (5 μ M) in the presence of SO₂ donor (0.0-80.0 μ M) in HEPES solution (20 mM, pH = 7.4, containing 400.0 μ M Cys). Each spectrum was recorded after incubation for 30 min at room temperature.

Figure S21. The fluorescence intensity at 502 nm of Probe 2 (5.0 μ M) in the absence and presence of HSO₃⁻ (25.0 μ M) at varied pH values.

Figure S22. Images of living A431 cells. Top row: cells incubated with Probe 2 (5.0 μ M) for 30 min. Bottom row: cells pretreated with NaHSO₃ (50.0 μ M) for 30 min, then washed with PBS buffer (20 mM, pH = 7.4) and further incubated with Probe 2 (5.0 μ M) for 30 min. (a), (c) Bright field images; (b), (d) Fluorescence images (excited with blue light). Scale bar = 50 μ m.

MTT assays

MTT assays were performed to evaluate the cytotoxicity of Probe 1 and 2. HepG2 cells were grown in Dulbecco's Modified Eagle's medium (DMEM) supplemented with 10% FBS (Fetal Bovine Serum) and 1% antibiotics at 37 °C in a humidified environment containing 5% CO₂. Before the experiment, the cells were placed in 96-well plates, followed by the addition of different concentrations of Probe 1 or 2 (0.0 to 20.0 μ M). The cells were then incubated at 37 °C in an atmosphere of 5% CO₂ and 95% air for 48 h, followed by MTT assays (n = 10). Untreated assay with Minimum Essential medium (n = 10) was also conducted under the same conditions.

Figure S23. Percentage of viable HepG2 cells after treatment with various concentrations of Probe 1 for 48 hours.

Figure S24. Percentage of viable HepG2 cells after treatment with various concentrations of Probe 2 for 48 hours.

Figure S25. ¹H NMR spectrum of Probe 1.

Figure S26. ¹³C NMR spectrum of Probe 1.

Figure S28. ¹H NMR spectrum of Probe 2.

Figure S29. ¹³C NMR spectrum of Probe 2.