Functional tuning of organic dyes containing 2,7carbazole and other electron-rich segments in the conjugation pathway

A. Venkateswararao,^a K. R. Justin Thomas,^{*a} Chun-Ting Li^b and Kuo-Chuan Ho^b

^a Organic Materials Laboratory, Department of Chemistry, Indian Institute of Technology

Roorkee, Roorkee-247 667, India. E-mail: krjt8fcy@iitr.ernet.in. Phone: +91-1332-285376

^b Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

Supporting Information

Fig. S1 Absorption spectra of precursor derivatives 2 and 3a-3e recorded in dichloromethane solutions.	S4
Fig. S2 Absorption spectra of the dyes (4a-4e) recorded in toluene solutions.	S4
Fig. S3 Absorption spectra of the dyes (4a-4e) recorded in tetrahydrofuran solutions.	S 5
Fig. S4 Absorption spectra of the dyes (4a-4e) recorded in <i>N</i> , <i>N</i> -dimethyl formamide solutions.	S 5
Fig. S5 Absorption spectra of the dye 4a recorded in different solvents.	S6
Fig. S6 Absorption spectra of the dye 4b recorded in different solvents.	S6
Fig. S7 Absorption spectra of the dye 4d recorded in different solvents.	S7
Fig. S8 Absorption spectra of the dye 4e recorded in different solvents.	S7
Fig. S9 Absorption spectra of the dye 4a recorded in dichloromethane, after the addition of TFA and TEA.	S8
Fig. S10 Absorption spectra of the dye 4b recorded in dichloromethane, after the addition of TFA and TEA.	S8
Fig. S11 Absorption spectra of the dye 4d recorded in dichloromethane, after the addition of TFA and TEA.	S9

Fig. S12 Absorption spectra of the dye 4e recorded in dichloromethane, after the addition of TFA and TEA.	S9
Fig. S13 Emission spectra of the carbazole precursor and aldehyde derivatives (2 and 3a-3e) recorded in dichloromethane solutions.	S10
Fig. S14 Emission spectra of the dye (4b) recorded in different solvents.	S10
Fig. S15 Emission spectra of the dye (4c) recorded in different solvents.	S11
Fig. S16 Emission spectra of the dye (4d) recorded in different solvents.	S11
Fig. S17 Emission spectra of the dyes (4e) recorded in different solvents.	S12
Fig. S18 Lippert-Mataga plot of the dye 4b.	S12
Fig. S19 $E_{\rm T}(30)$ plot of the dye 4b .	S13
Fig. S20 Lippert-Mataga plot of the dye 4c.	S13
Fig. S21 $E_{\rm T}(30)$ plot of the dye 4c .	S14
Fig. S22 Lippert-Mataga plot of the dye 4e.	S14
Fig. S23 $E_{\rm T}(30)$ plot of the dye 4e .	S15
Fig. S24 Cyclic voltammograms of the carbazole aldehyde derivatives (2 and 3a-3e) recorded in dichloromethane solutions.	S15
Fig. S25 Cyclic voltammograms of the dyes 4a-4e recorded in dichloromethane solutions.	S16
Table S1 Absorption properties of the dyes recorded in different solvents	S17
Table S2 Emission properties of the dyes recorded in different solvents	S17
Fig. S26 ¹ H NMR spectrum of 2 recorded in CDCl ₃ .	S18
Fig. S27 ¹³ C NMR spectrum of 2 recorded in CDCl ₃ .	S18
Fig. S28 ¹ H NMR spectrum of 3a recorded in CDCl ₃ .	S19
Fig. S29 ¹³ C NMR spectrum of 3a recorded in CDCl ₃ .	S19
Fig. S30 ¹ H NMR spectrum of 3b recorded in CDCl ₃ .	S20
Fig. S31 ¹³ C NMR spectrum of 3b recorded in CDCl ₃ .	S20

Fig. S32 ¹ H NMR spectrum of 3c recorded in $CDCl_3$.	S21
Fig. S33 13 C NMR spectrum of 3c recorded in CDCl ₃ .	S21
Fig. S34 ¹ H NMR spectrum of 3d recorded in CDCl ₃ .	S22
Fig. S35 ¹³ C NMR spectrum of 3d recorded in CDCl ₃ .	S22
Fig. S36 ¹ H NMR spectrum of 3e recorded in CDCl ₃ .	S23
Fig. S37 13 C NMR spectrum of 3e recorded in CDCl ₃ .	S23
Fig. S38 ¹ H NMR spectrum of 4a recorded in DMSO- d_6 .	S24
Fig. S39 ¹³ C NMR spectrum of 4a recorded in DMSO- d_6 .	S24
Fig. S40 ¹ H NMR spectrum of 4b recorded in DMSO- d_6 .	S25
Fig. S41 ¹³ C NMR spectrum of 4b recorded in DMSO- d_6 .	S25
Fig. S42 ¹ H NMR spectrum of 4c recorded in DMSO- d_6 .	S26
Fig. S43 ¹³ C NMR spectrum of 4c recorded in DMSO- d_6 .	S26
Fig. S44 ¹ H NMR spectrum of 4d recorded in DMSO- d_6 .	S27
Fig. S45 ¹³ C NMR spectrum of 4d recorded in DMSO- d_6 .	S27
Fig. S46 ¹ H NMR spectrum of 4e recorded in DMSO- d_6 .	S28
Fig. S47 ¹³ C NMR spectrum of 4e recorded in DMSO- d_6 .	S28
Table S3 Cartesian coordinates for the optimized geometry of 4a	S29
Table S4 Cartesian coordinates for the optimized geometry of 4b	S31
Table S5 Cartesian coordinates for the optimized geometry of 4c	S33
Table S6 Cartesian coordinates for the optimized geometry of 4d	S35
Table S7 Cartesian coordinates for the optimized geometry of 4e	S38

Fig. S1 Absorption spectra of precursor derivatives 2 and 3a-3e recorded in dichloromethane solutions.

Fig. S2 Absorption spectra of the dyes (4a-4e) recorded in toluene solutions.

Fig. S3 Absorption spectra of the dyes (4a-4e) recorded in tetrahydrofuran solutions.

Fig. S4 Absorption spectra of the dyes (4a-4e) recorded in *N*,*N*-dimethyl formamide solutions.

Fig. S5 Absorption spectra of the dye 4a recorded in different solvents.

Fig. S6 Absorption spectra of the dye 4b recorded in different solvents.

Fig. S7 Absorption spectra of the dye 4d recorded in different solvents.

Fig. S8 Absorption spectra of the dye 4e recorded in different solvents.

Fig. S9 Absorption spectra of the dye 4a recorded in dichloromethane, after the addition of TFA

and TEA.

Fig. S10 Absorption spectra of the dye 4b recorded in dichloromethane, after the addition of TFA and TEA.

Fig. S11 Absorption spectra of the dye 4d recorded in dichloromethane, after the addition of

Fig. S12 Absorption spectra of the dye 4e recorded in dichloromethane, after the addition of TFA and TEA.

Fig. S13 Emission spectra of the carbazole precursor and aldehyde derivatives (2 and 3a-3e) recorded in dichloromethane solutions.

Fig. S14 Emission spectra of the dye (4b) recorded in different solvents.

Fig. S15 Emission spectra of the dye (4c) recorded in different solvents.

Fig. S16 Emission spectra of the dye (4d) recorded in different solvents.

Fig. S17 Emission spectra of the dyes (4e) recorded in different solvents.

Fig. S18 Lippert-Mataga plot of the dye 4b.

Fig. S19 $E_{\rm T}(30)$ plot of the dye **4b**.

Fig. S20 Lippert-Mataga plot of the dye 4c.

Fig. S21 $E_{\rm T}(30)$ plot of the dye **4c**.

Fig. S22 Lippert-Mataga plot of the dye 4e.

Fig. S23 $E_{\rm T}(30)$ plot of the dye **4e**.

Fig. S24 Cyclic voltammograms of the carbazole aldehyde derivatives (2 and 3a-3e) recorded in dichloromethane solutions.

Fig. S25 Cyclic voltammograms of the dyes (4a-4e) recorded in dichloromethane solutions.

Dye	$\lambda_{abs,}$	nm ($\epsilon_{max} \times$	$10^3 \mathrm{M}^{-1} \mathrm{cm}^{-1})$					
	TiO ₂	СН	Tol	THF	DCM +	DCM +	DMF	ACN
	film				TFA	TEA		
4a	na	390,	393 (30.5),	389 (44.2),	391 (35.9),	391 (37.0),	390 (45.8)	387,
		311, 274	313 (17.1)	309 (22.8),	313 (22.1),	276 (30.0)		274
				275 (32.2)	276 (27.2)			
4b	483	397,	448 (31.5),	427 (37.8),	452 (30.6),	414 (43.5),	409 (49.0)	422,
		375,	372 (26.0),	368 (27.0)	374 (27.7),	275 (31.1)		368,
		350, 305	307 (17.8)		276 (30.1)			273
4c	525	ns	493 (32.6),	475 (46.8),	505 (31.1),	456 (35.8),	449 (47.2),	475,
			389 (23.7),	389 (33.1),	391 (25.1)	387 (21.1),	386 (25.6),	389,
			312 (15.3)	309 (20.9)		271 (30.9)	310 (15.9)	270
4d	464	397,	430 (29.4),	416 (47.4),	430 (32.9),	412 (49.2),	412 (55.7),	411,
		351,	396 (26.7),	312 (18.5)	397 (31.9),	307 (18.0)	311 (17.7)	303,
		304, 267	315 (14.0)		313 (16,2)			266
4e	470	416,	438 (27.3),	427 (57.0),	446 (47.9),	417 (69.0),	414 (81.2),	412,
		402,	388 (23.6),	312 (25.0)	389 (44.9),	309 (26.8),	305 (28.9)	303,
		348, 305	314 (13.7)		316 (25.5),	271 (65.1)		269
					273 (59.3)			

Table S1 Absorption properties of the dyes recorded in different solvents

na = not soluble

Table S2 Emission properties of the dyes recorded in different solvents

Dye	λ_{em} , nm						Stoke shift, cm ⁻¹			
	СН	Tol	THF	DMF	ACN	СН	Tol	THF	DMF	ACN
4 a	462, 438	448	469	485	491	2810	3123	4385	5022	5473
4b	535	569	543	561	500	6497	4697	5003	6625	3697
4c	na	594	568	563	547	na	3449	2986	4510	2771
4d	508, 480	553	509	496	506	5504	5172	4625	4111	4568
4 e	509, 480	549	504	512	496	5229	4616	3578	4623	4111

na = not applicable

Fig. S27 ¹³C NMR spectrum of 2 recorded in CDCl₃.

Fig. S29 ¹³C NMR spectrum of 3a recorded in CDCl₃.

Fig. S31 ¹³C NMR spectrum of 3b recorded in CDCl₃.

Fig. S33 ¹³C NMR spectrum of 3c recorded in CDCl₃.

Fig. S37 ¹³C NMR spectrum of 3e recorded in CDCl₃.

S24

Fig. S41 ¹³C NMR spectrum of 4b recorded in DMSO-*d*₆.

Fig. S47 ¹³C NMR spectrum of 4e recorded in DMSO- d_6 .

 Table S3 Cartesian coordinates for the optimized geometry of 4a

Energy = -2333.31661463 H_a

Ato	m X	Y	Z
6	-4 900722000	-2 215371000	0 525514000
6	-5 521139000	-0.986813000	0.197717000
6	-4 751563000	0 100549000	-0 236590000
6	-3 368542000	-0.062942000	-0 319904000
6	-2 735484000	-1 293439000	0.001074000
6	-3.525638000	-2.370924000	0.419938000
7	-2.403934000	0.854053000	-0.723804000
6	-1.155270000	0.244828000	-0.647034000
6	-1.320349000	-1.097185000	-0.204678000
6	0.102162000	0.777613000	-0.922311000
6	1.230182000	-0.048505000	-0.778003000
6	1.066607000	-1.386121000	-0.344603000
6	-0.188547000	-1.906266000	-0.057209000
7	-6.930348000	-0.851590000	0.322008000
6	-7.484045000	0.340568000	0.863826000
6	-7.787466000	-1.894528000	-0.122722000
6	-8.606218000	0.941681000	0.271371000
6	-9.150329000	2.104000000	0.814802000
6	-8.578674000	2.697107000	1.941859000
6	-7.456801000	2.106666000	2.527895000
6	-6.916122000	0.935059000	2.002828000
6	-7.512512000	-2.586411000	-1.313432000
6	-8.350576000	-3.615391000	-1.738012000
6	-9.483287000	-3.960871000	-0.998647000
6	-9.764260000	-3.268299000	0.180802000
6	-8.922698000	-2.250384000	0.623862000
6	5.043638000	0.979947000	-1.155315000
6	4.296050000	1.764310000	-2.005895000
6	2.905513000	1.488668000	-1.965286000
6	2.560019000	0.488/23000	-1.081356000
16	3.99416/000	-0.110227000	-0.2/016/000
6	-2.912315000	5.619458000	0.896894000
6	-2.906946000	4.655135000	-0.293018000
6	-2.649849000	3.200561000	0.11//41000
6 1	-2.652374000	2.241121000	-1.08158/000
1	-5.51695/000	-3.03/883000	0.869952000
1	-5.255966000	1.03/521000	-0.488912000
1	-3.068108000	-5.520929000	0.080/05000
] 1	0.224506000	1.813864000	-1.210219000
1	1.9402 / /000	-2.024149000	-0.25//82000
1	-0.280/80000	-2.930000000	0.2/1052000

1	-9.047404000	0.491716000	-0.611641000
1	-10.019368000	2.554611000	0.343831000
1	-9.002182000	3.605526000	2.358922000
1	-7.006826000	2.550608000	3.411450000
1	-6.054254000	0.471354000	2.470903000
1	-6.641296000	-2.313691000	-1.899289000
1	-8.121886000	-4.140012000	-2.661335000
1	-10.137546000	-4.758579000	-1.336349000
1	-10.637510000	-3.530398000	0.771402000
1	-9.138368000	-1.726557000	1.548993000
1	4.738966000	2.491629000	-2.676966000
1	2.180438000	1.982718000	-2.601543000
1	-3.097301000	6.648860000	0.574392000
1	-1.952259000	5.602541000	1.424442000
1	-3.691369000	5.351259000	1.618860000
1	-3.868491000	4.719984000	-0.820237000
1	-2.142196000	4.970408000	-1.016144000
1	-1.684942000	3.121929000	0.634435000
1	-3.413852000	2.875180000	0.834786000
1	-3.614462000	2.289562000	-1.603533000
1	-1.892462000	2.541758000	-1.811050000
6	9.297245000	1.019908000	-0.576727000
6	8.632600000	2.148625000	-1.045925000
6	8.569058000	-0.146051000	-0.279127000
6	7.249499000	2.146035000	-1.211824000
6	7.180748000	-0.152378000	-0.503177000
1	6.745237000	3.048190000	-1.542411000
1	6.626510000	-1.070419000	-0.328803000
6	6.494761000	0.987152000	-0.948439000
1	10.372419000	1.035651000	-0.458815000
1	9.197776000	3.046177000	-1.277987000
6	9.170953000	-1.405631000	0.159894000
1	8.617809000	-2.283345000	-0.170770000
6	10.289621000	-1.696817000	0.880664000
6	10.640213000	-3.083600000	1.017136000
7	10.888024000	-4.216037000	1.111763000
6	11.228297000	-0.780406000	1.598585000
8	12.350969000	-1.099100000	1.923747000
8	10.690065000	0.420406000	1.907487000
1	11.382079000	0.901505000	2.392590000

Energy = - 2332.02095392 H_a

Ato	om X	Y	Z
7	7.350352000	-0.467690000	-0.160954000
7	2.585775000	0.642303000	0.655839000
6	9.954351000	-3.637153000	0.940016000
6	10.348159000	-2.693874000	-0.018451000
1	11.323132000	-2.774522000	-0.494000000
6	9.491282000	-1.653801000	-0.388962000
1	9.803618000	-0.939296000	-1.145378000
6	8.222586000	-1.528400000	0.209980000
6	7.832908000	-2.473219000	1.178506000
1	6.861057000	-2.386674000	1.655880000
6	8.689777000	-3.520197000	1.530927000
6	7.861437000	0.849555000	-0.342418000
6	8.813536000	1.381284000	0.547324000
1	9.158188000	0.785617000	1.387847000
6	9.316506000	2.671776000	0.355748000
1	10.051658000	3.065506000	1.054108000
6	8.869077000	3.460408000	-0.711847000
1	9.257778000	4.465667000	-0.854405000
6	7.913800000	2.936995000	-1.593536000
1	7.561647000	3.533470000	-2.432212000
6	7.418223000	1.641896000	-1.418511000
1	6.688625000	1.241503000	-2.117044000
6	5.949693000	-0.707081000	-0.270817000
6	5.488601000	-1.848147000	-0.977012000
1	6.213285000	-2.517621000	-1.430650000
6	4.128195000	-2.115413000	-1.094693000
1	3.795008000	-2.997311000	-1.636842000
6	3.197304000	-1.231887000	-0.523412000
6	3.669278000	-0.078502000	0.164988000
6	5.036905000	0.186187000	0.309128000
1	5.392233000	1.054085000	0.854573000
6	1.755946000	-1.203259000	-0.432367000
6	0.728953000	-2.042156000	-0.891897000
1	0.960541000	-2.940801000	-1.458732000
6	-0.595557000	-1.724332000	-0.605464000
1	-1.380517000	-2.395749000	-0.943647000
6	-0.932671000	-0.565768000	0.144356000
6	0.089927000	0.291597000	0.597502000
1	-0.158318000	1.196572000	1.141921000
6	1.418027000	-0.033689000	0.311355000

6	2.684757000	1.881839000	1.429453000
1	1.750568000	2.006260000	1.982915000
6	2.976250000	3.135201000	0.588184000
1	3.915570000	2.991110000	0.040456000
6	1.863937000	3.529952000	-0.392574000
1	0.936178000	3.715871000	0.164935000
1	1.656928000	2.694005000	-1.071739000
6	2.219207000	4.773454000	-1.217334000
1	1.407838000	5.037264000	-1.905762000
1	3.476090000	1.749393000	2.174910000
1	3.152529000	3.959076000	1.292790000
1	3.122696000	4.607186000	-1.816593000
6	-2.330364000	-0.249589000	0.464217000
6	-2.820946000	0.534257000	1.495409000
16	-3.657405000	-0.864088000	-0.497161000
6	-4.232617000	0.633408000	1.518215000
1	-2.181313000	1.004853000	2.235087000
6	-4.863364000	-0.070333000	0.504402000
1	-4.768010000	1.198961000	2.273493000
1	8.369448000	-4.239049000	2.281803000
1	10.620608000	-4.449206000	1.220426000
6	-6.292481000	-0.192904000	0.235964000
6	-6.790939000	-0.986386000	-0.823171000
6	-7.239519000	0.491695000	1.040206000
6	-8.153834000	-1.086440000	-1.061919000
1	-6.110363000	-1.534700000	-1.469120000
6	-8.600551000	0.391250000	0.803258000
1	-6.903838000	1.113356000	1.863985000
6	-9.100859000	-0.403313000	-0.259750000
1	-8.503079000	-1.704992000	-1.885458000
1	-9.275240000	0.937661000	1.451329000
6	-10.494719000	-0.576450000	-0.603296000
6	-11.647519000	-0.070014000	-0.056724000
1	-10.659728000	-1.227442000	-1.457880000
6	-11.698600000	0.807218000	1.073707000
6	-12.984090000	-0.398612000	-0.614634000
7	-11.756152000	1.518815000	1.996888000
8	-14.035252000	0.040488000	-0.170275000
8	-12.936969000	-1.238160000	-1.675885000
1	-13.862022000	-1.380718000	-1.967951000
1	2.403660000	5.641125000	-0.571929000

 Table S5 Cartesian coordinates for the optimized geometry of 4c

Energy = -3204.25230372 H_a

At	tom X	Y	Z
7	-9 039067000	-0 499878000	0 154921000
7	-4 274065000	0.655225000	-0 598556000
6	-11 611271000	-3 650673000	-1.067833000
6	-12.013792000	-2 750379000	-0.072357000
1	-12.987019000	-2.860325000	0.400930000
6	-11.167366000	-1.716609000	0.337668000
1	-11.485872000	-1.035697000	1.121921000
6	-9.900986000	-1.554244000	-0.257032000
6	-9.502345000	-2.456115000	-1.262132000
1	-8.531883000	-2.341198000	-1.736542000
6	-10.348835000	-3.497208000	-1.654857000
6	-9.561675000	0.804773000	0.384295000
6	-10.529223000	1.354382000	-0.477920000
1	-10.877160000	0.782201000	-1.333203000
6	-11.043732000	2.632445000	-0.240097000
1	-11.790533000	3.039690000	-0.918034000
6	-10.593470000	3.391859000	0.847302000
1	-10.991443000	4.387661000	1.026016000
6	-9.623368000	2.850969000	1.701828000
1	-9.268662000	3.424086000	2.555554000
6	-9.115578000	1.567773000	1.480472000
1	-8.373933000	1.153991000	2.158141000
6	-7.637683000	-0.735242000	0.267101000
6	-7.175895000	-1.896974000	0.937964000
1	-7.900384000	-2.584240000	1.364434000
6	-5.814997000	-2.161785000	1.056185000
l	-5.481026000	-3.059412000	1.571362000
6	-4.884561000	-1.256012000	0.520261000
6	-5.357459000	-0.083671000	-0.13480/000
6 1	-6./25312000	0.180195000	-0.2//895000
l	-/.081101000	1.063313000	-0./980/0000
6	-3.442/51000	-1.218083000	0.439961000
0 1	-2.414886000	-2.0641/8000	0.883/86000
1	-2.0450/9000	-2.9/8986000	1.424522000
0	-1.089998000	-1./32400000	0.013489000
1	-0.30402/000	-2.409/04000	0.940/43000
6	-0.735211000	-0.332339000	-0.100303000
1	-1.770902000	1 23/722000	-0.33319/000
1 6	-1.529502000	1.234/23000	-1.031/09000
6	-3.103333000 _A 377116000	1 921211000	-0.207133000 -1.328081000
U		1.721211000	-1.520001000

1	-3.435246000	2.067023000	-1.871712000
6	-4.668706000	3.143326000	-0.443573000
1	-5.617293000	2.985470000	0.084082000
6	-3.568536000	3.490195000	0.568182000
1	-2.629814000	3.684332000	0.032339000
1	-3.382282000	2.627570000	1.219452000
6	-3.922552000	4.708036000	1.430961000
1	-3.118792000	4.938806000	2.139886000
1	-4.087807000	5.599672000	0.813604000
1	-5.159432000	1.814999000	-2.082007000
1	-4.828323000	3.994951000	-1.118557000
1	-4.836625000	4.531743000	2.011081000
6	0.644748000	-0.223402000	-0.404515000
6	1.138676000	0.595568000	-1.405336000
16	1.970653000	-0.876850000	0.539658000
6	2.551341000	0.693436000	-1.424333000
1	0.500970000	1.092762000	-2.128989000
6	3.174638000	-0.049507000	-0.434715000
1	3.092684000	1.285165000	-2.157156000
1	-10.022259000	-4.182520000	-2.433872000
1	-12.269413000	-4.457900000	-1.379645000
6	4.585911000	-0.197365000	-0.164063000
6	5.211168000	-0.948416000	0.823283000
16	5.781113000	0.629059000	-1.144490000
6	6.619959000	-0.864943000	0.793647000
1	4.669724000	-1.545523000	1.550658000
6	7.111897000	-0.049630000	-0.216074000
1	7.256114000	-1.394068000	1.497244000
6	8.477850000	0.260567000	-0.546307000
6	8.951913000	1.069501000	-1.581798000
16	9.803397000	-0.396920000	0.387122000
6	10.349757000	1.156365000	-1.619653000
1	8.302333000	1.577419000	-2.287756000
6	10.995921000	0.420621000	-0.621471000
1	10.902606000	1.735965000	-2.353218000
6	12.408109000	0.369959000	-0.483214000
6	13.213201000	-0.297974000	0.415557000
1	12.932686000	0.968033000	-1.224518000
6	12.700302000	-1.129239000	1.458131000
6	14.687453000	-0.204353000	0.367679000
7	12.270798000	-1.805509000	2.308005000
8	15.438140000	-0.785455000	1.140209000
8	15.145329000	0.596696000	-0.626391000
1	16.123756000	0.589744000	-0.568968000

Table S6 Cartesian coordinates for the optimized geometry of 4d

Energy = -2759.76270650 H_a

Ato	m X	Y	Ζ
7	9 855038000	-0 271814000	-0 139719000
, 7	5 024768000	0.558449000	0.625237000
6	12 663973000	-3 242071000	1 011707000
6	12 989852000	-2 298040000	0.028715000
1	13.965048000	-2.326570000	-0.452320000
6	12.065165000	-1.324565000	-0.358946000
1	12.325741000	-0.609353000	-1.134129000
6	10.795150000	-1.266924000	0.247509000
6	10.473034000	-2.212681000	1.239507000
1	9.500280000	-2.178121000	1.721553000
6	11.397942000	-3.193796000	1.609178000
6	10.279978000	1.072631000	-0.340213000
6	11.203134000	1.673519000	0.536223000
1	11.591555000	1.109720000	1.379688000
6	11.621301000	2.991344000	0.327561000
1	12.334883000	3.438427000	1.016079000
6	11.116481000	3.738554000	-0.744204000
1	11.438300000	4.765284000	-0.899913000
6	10.190507000	3.145578000	-1.613140000
1	9.794422000	3.709254000	-2.454856000
6	9.779841000	1.823563000	-1.421151000
1	9.071719000	1.370057000	-2.109080000
6	8.472793000	-0.603404000	-0.247450000
6	8.087706000	-1.785684000	-0.930236000
1	8.854486000	-2.419323000	-1.365694000
6	6.746545000	-2.137495000	-1.051861000
1	6.472428000	-3.048869000	-1.578240000
6	5.758883000	-1.299778000	-0.508588000
6	6.154465000	-0.1068/2000	0.159956000
6	7.502175000	0.243644000	0.307914000
l	7.799090000	1.144031000	0.835308000
6	4.316/00000	-1.352947000	-0.434331000
6	3.345904000	-2.256855000	-0.891402000
l	3.635951000	-3.151526000	-1.43/298000
6 1	2.001232000	-2.0084/4000	-0.630538000
l	1.261021000	-2./299/0000	-0.966344000
6	1.585814000	-0.854981000	0.08/300000
0	2.332181000	0.000829000	0.536896000
1	2.244/88000	0.909004000	1.054861000
0	5.901/51000	-0.190338000	0.280123000
0	5.044056000	1.81/390000	1.3/2843000

1	4.099302000	1.898639000	1.916528000
6	5.268290000	3.067686000	0.505798000
1	6.220859000	2.968718000	-0.029050000
6	4.145202000	3.369463000	-0.495031000
1	3.201816000	3.512477000	0.048725000
1	3.997212000	2.505191000	-1.153604000
6	4.433693000	4.610847000	-1.348684000
1	3.613993000	4.810496000	-2.048736000
1	5.835394000	1.747979000	2.126909000
1	5.385732000	3.916827000	1.192411000
1	5.350167000	4.482554000	-1.937477000
6	0.164257000	-0.612420000	0.371605000
6	-0.399797000	0.171882000	1.361153000
16	-1.102982000	-1.342035000	-0.595865000
6	-1.819536000	0.182374000	1.349023000
1	0.190257000	0.703620000	2.101273000
6	-2.378384000	-0.596020000	0.351871000
1	-2.412404000	0.724315000	2.079454000
1	11.129608000	-3.914400000	2.378540000
1	13.383424000	-4.002201000	1.305857000
6	-3.796539000	-0.823568000	0.052274000
6	-4.214225000	-1.931437000	-0.724995000
6	-4.779231000	0.069947000	0.543606000
1	-3.477783000	-2.638888000	-1.097727000
6	-5.559794000	-2.155398000	-1.009178000
6	-6.121337000	-0.153710000	0.269572000
1	-4.477180000	0.939089000	1.121474000
1	-5.851670000	-3.016331000	-1.605777000
6	-6.518059000	-1.264102000	-0.508002000
6	-7.330617000	0.678408000	0.696594000
6	-7.971857000	-1.243486000	-0.640420000
6	-8.470540000	-0.115233000	0.056800000
6	-7.259780000	2.135840000	0.150071000
6	-7.470030000	0.752044000	2.246750000
6	-8.846313000	-2.114104000	-1.306810000
6	-9.827730000	0.150166000	0.091099000
1	-8.167250000	2.657670000	0.476764000
1	-6.420745000	2.636390000	0.648761000
6	-7.107364000	2.287783000	-1.367798000
1	-6.621866000	1.334616000	2.627371000
1	-8.370586000	1.335845000	2.473469000
6	-7.534824000	-0.588227000	2.988827000
1	-8.473976000	-2.982615000	-1.844035000
6	-10.210328000	-1.844989000	-1.270741000
6	-10.731853000	-0.717716000	-0.580544000
1	-10.192216000	1.018046000	0.628666000

1	-7.074563000	3.350649000	-1.634156000
1	-7.946471000	1.839967000	-1.910935000
1	-6.183369000	1.828014000	-1.734152000
1	-7.622444000	-0.412897000	4.067296000
1	-6.634352000	-1.189812000	2.825449000
1	-8.400292000	-1.185806000	2.682665000
1	-10.900304000	-2.511402000	-1.782748000
6	-12.167950000	-0.550009000	-0.631684000
6	-13.007388000	0.400095000	-0.104911000
1	-12.680116000	-1.322465000	-1.199015000
6	-12.584097000	1.519258000	0.681067000
7	-12.250762000	2.435242000	1.322848000
6	-14.475805000	0.346052000	-0.318381000
8	-15.260535000	1.173897000	0.122465000
8	-14.877477000	-0.715127000	-1.057637000
1	-15.851493000	-0.649210000	-1.146725000
1	4.562562000	5.503579000	-0.724274000

 Table S7 Cartesian coordinates for the optimized geometry of 4e

Energy = -2775.81289855 H_a

Ator	m X	Y	Ζ
7	9 805048000	-0 446238000	-0.095775000
, 7	4 994324000	0.496333000	0.668306000
6	12 254962000	-3 912303000	0.076062000
6	12.753466000	-2.714665000	-0.453896000
1	13.771636000	-2.668620000	-0.833820000
6	11.948306000	-1.574289000	-0.518486000
1	12.344101000	-0.657786000	-0.946796000
6	10.625627000	-1.606171000	-0.034526000
6	10.130488000	-2.809070000	0.505216000
1	9.115740000	-2.850520000	0.890141000
6	10.937540000	-3.949840000	0.549948000
6	10.346039000	0.832871000	0.218684000
6	11.231481000	0.994991000	1.301065000
1	11.500912000	0.137324000	1.910993000
6	11.763910000	2.253747000	1.595827000
1	12.446529000	2.359153000	2.436132000
6	11.412529000	3.374106000	0.831867000
1	11.824126000	4.352454000	1.067300000
6	10.522429000	3.217562000	-0.238945000
1	10.244565000	4.075618000	-0.847012000
6	9.998741000	1.959843000	-0.550502000
1	9.321659000	1.848594000	-1.392761000
6	8.416875000	-0.574736000	-0.398880000
6	8.011174000	-1.377703000	-1.495247000
1	8.766984000	-1.876145000	-2.094799000
6	6.664056000	-1.531929000	-1.809918000
1	6.373456000	-2.154811000	-2.652731000
6	5.693515000	-0.866890000	-1.043113000
6	6.111620000	-0.047387000	0.042846000
6	7.463145000	0.096753000	0.380324000
1	7.773604000	0.705886000	1.222623000
6	4.249636000	-0.813288000	-1.065830000
6	3.262016000	-1.395361000	-1.874541000
1	3.536602000	-2.044502000	-2.702650000
6	1.919254000	-1.149904000	-1.600289000
l	1.162308000	-1.629628000	-2.215288000
6	1.524287000	-0.318964000	-0.518037000
6	2.508873000	0.284308000	0.289181000
l	2.219036000	0.946908000	1.097838000
6	3.855734000	0.031038000	0.0137/5000
6	5.036529000	1.388699000	1.828510000

1	4.062638000	1.341781000	2.322474000
6	5.394172000	2.846775000	1.495742000
1	6.367298000	2.872582000	0.989878000
6	4.352513000	3.588904000	0.647711000
1	3.389586000	3.590404000	1.175734000
1	4.190543000	3.049553000	-0.293327000
6	4.763805000	5.033410000	0.336546000
1	4.000583000	5.541786000	-0.264230000
1	5.767961000	0.984345000	2.536335000
1	5.527843000	3.370721000	2.451735000
1	5.705193000	5.066621000	-0.225492000
6	0.103554000	-0.088314000	-0.217937000
6	-0.474281000	0.283212000	0.981774000
16	-1.139453000	-0.259857000	-1.442587000
6	-1.886189000	0.421692000	0.922817000
1	0.098466000	0.435963000	1.891266000
6	-2.424119000	0.163824000	-0.324181000
1	-2.487561000	0.715038000	1.777629000
1	10.535556000	-4.868748000	0.971021000
1	12.881513000	-4.799775000	0.117985000
6	-3.832491000	0.195238000	-0.740080000
6	-4.185523000	0.324022000	-2.114274000
6	-4.845850000	0.095174000	0.231012000
1	-3.404159000	0.413946000	-2.864111000
6	-5.512146000	0.362356000	-2.521683000
6	-6.181707000	0.144252000	-0.180896000
1	-4.591340000	-0.039642000	1.276329000
1	-5.755338000	0.466171000	-3.576273000
6	-6.531184000	0.276191000	-1.557464000
7	-7.340276000	0.079733000	0.584282000
6	-7.968148000	0.300993000	-1.618103000
6	-8.432653000	0.179903000	-0.270274000
6	-7.422702000	-0.020809000	2.044974000
6	-8.899812000	0.427445000	-2.662481000
6	-9.789006000	0.189243000	0.042402000
1	-8.198727000	0.673569000	2.382590000
1	-6.477318000	0.341878000	2.456516000
6	-7.728777000	-1.431546000	2.572036000
1	-8.568843000	0.520486000	-3.693643000
6	-10.253101000	0.436168000	-2.357102000
6	-10.722015000	0.320022000	-1.013342000
1	-10.114436000	0.103972000	1.070976000
1	-7.896063000	-1.335964000	3.653093000
1	-8.676348000	-1.780476000	2.143249000
6	-6.629055000	-2.470354000	2.314334000
1	-10.983405000	0.533757000	-3.156095000

1	-5.690184000	-2.124108000	2.766934000
1	-6.442821000	-2.552350000	1.236448000
6	-6.981716000	-3.854734000	2.872827000
1	-7.145363000	-3.818350000	3.956979000
1	-6.177454000	-4.574741000	2.681782000
1	-7.896360000	-4.248183000	2.412548000
6	-12.159115000	0.350707000	-0.844597000
6	-12.966983000	0.247678000	0.260841000
1	-12.703640000	0.482655000	-1.775712000
6	-12.498872000	0.059967000	1.600879000
7	-12.125900000	-0.094953000	2.695949000
6	-14.445886000	0.323438000	0.156031000
8	-15.201418000	0.245503000	1.114649000
8	-14.893980000	0.489620000	-1.111282000
1	-15.872196000	0.532814000	-1.063985000
1	4.905501000	5.615310000	1.255685000