Supplementary Content ## Cobalt supported on metal-doped ceria catalysts (M = Zr, Sn and Ti) for NO oxidation Yang Yu^{1,2}, Lie Zhong^{1,2}, Jie Ding^{1,2}, Wei Cai ^{1,2}, Qin Zhong* ^{1,2} 1 School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China. 2 Nanjing AIREP Environmental Protection Technology Co., Ltd, Nanjing, Jiangsu 210091, PR China. Fig. S1 NO-TPD of these catalysts. The TPD profiles of NO on these catalysts were shown in Fig. S1. As the temperature was increased from 50 to 700 °C, NO desorption was observed on these E-mail: zq304@mail.njust.edu.cn. ^{*} Corresponding author.Tel./fax:+86 25 84315517 samples. All the samples showed three main temperature ranges (α , β and γ), suggesting that NO adsorbed on three different sites [1]. NO desorption was completed over all the samples at below 700 °C. The low temperature peak α was ascribed to the desorption of NO from weakly bonded sites and the peak β and γ in high temperature range was due to the strongly adsorbed species, i.e., nitrates [2]. The NO desorption amount was consistent with NO capacities of these sorbents. The weakly adsorbed NO (peak α) increased with the amount of highly dispersed Co_3O_4 . This results indicated the highly dispersed Co_3O_4 species were favorable for NO adsorption and desorption, thus improving the catalytic activities. In addition, the adsorbed NO was easy to be desorbed in the temperature range from 50 °C to 250 °C, which indicated that the adsorption NO was weak. Table S1 The textural properties of CeO₂, Ce-Zr, Ce-Sn and Ce-Ti supports. | Sample | BET (m ² g ⁻¹) | S _{BET} (500) - S _{BET} (800)/S _{BET} (500) | |-----------------------|---------------------------------------|--| | CeO ₂ | 65 | / | | Ce-Zr | 91 | / | | Ce-Sn | 72 | / | | Ce-Ti | 85 | / | | CeO ₂ -800 | 3 | 0.9538 | | Ce-Zr-800 | 46 | 0.4945 | | Ce-Sn-800 | 31 | 0.5694 | | Ce-Ti-800 | 49 | 0.4235 | ## References - [1] J. Xu, Y. J. Wang and Y. F. Zhu, Langmuir, 2013, 29,10566. - [2] B. Azambre, L. Zenboury, A. Koch and J. V. Weber, J. Phys. Chem. C, 2009, 113, 13287.