Electronic Supplementary Information for

Novel supramolecular assemblies of repulsive DNA-anionic porphyrin complexes based on covalently modified multiwalled carbon nanotubes and cyclodextrins

Jingheng Ning, a,c Yufang Wang, b Qi Wu, a Xuefeng Zhang, C Xianfu Lin*a and Hongbin Zhao*^b

**Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China. Fax: + 86 571 87952618; Tel: + 86 571 87951588; E-mail: <u>llc123@zju.edu.cn</u> **bCollege of Chemistry and Environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China. Fax: + 86 731 85040753; Tel: + 86 135 74806898; E-mail: <u>zhaohbhanlf@163.com</u> *School of Chemical and Biological Engineering, Changsha University of Science & Technology, Changsha, Hunan 410076, P. R. China.

Contents:

Figure S1, ¹H NMR spectrum of 1 in DMSO- d_6 ;

Figure S2, FT-IR spectra of 1, 2 and 2-non;

Figure S3, thermogravimetric curve of 2.

Figure S4, the fluoresence spectra of 2-non interacting with (A) α -CD (B) β -CD and then with DNA (left inset, dotted lines).

Figure S5, the fluoresence spectra of 1 interacting with (A) α -CD (B) β -CD and then with DNA (left inset, dotted lines).

Figure S1. ¹H NMR spectrum of 1 in DMSO- d_6 as the trisodium salt

 δ 8.97 (broad, 8 H, β -pyrrole), 8.19 (d, 6 H, 4-sulfonatophenyl), 8.06 (d, 6 H, 4-sulfonatophenyl), 7.89 (d, 2 H, 4-aminophenyl), 7.03 (d, 2 H, 4-aminophenyl), 5.58 (s, 2 H, amino NH₂), -2.86 (s, 2 H, pyrrole NH).

Figure S2. FT-IR spectra of 1, 2 and 2-non

The FT-IR spectrum of ATSPP/MWCNTs **2** shows characteristic vibrations centered at 1642 and 1050 cm⁻¹, which should be respectively attributed to the carbonyl group (C=O) and the C-N single bond, supporting the formation of the vital amide bond between ATSPP and MWCNTs.

In the spectrum of **2-non**, the small shoulder peak on the left side of 1642 cm⁻¹ (another characteristic absorption for the C=O bond) could not be observed, which indicated that there wasn't a carbonyl group in **2-non** and **1** was absorbed onto MWCNTs surface in a non-covalent way.

The TGA curve of **2** showed a continuous weight loss starting from 200 to 800 °C, with a major weight loss at 720 °C. The decompositions in the temperature ranges from 200 to 480 °C and 720 to 800 °C were assigned to the attached porphyrin and the MWCNTs, respectively.

Figure S4. The fluoresence spectra of **2-non** (9×10⁻³ g L⁻¹) in the pH 7.04 phosphate buffer solution containing various concentration of (A) α -CD (B) β -CD at 25 °C (excitation wavelength 423 nm). The concentration of CD is: (1) 0 M; (2) 1.5×10⁻⁵ M; (3) 3.0×10⁻⁵ M; (4) 4.5×10⁻⁵ M; (5) 6.0×10⁻⁵ M; (6) 7.5×10⁻⁵ M; (7) 9.0×10⁻⁵ M; (8) 1.05×10⁻⁴ M; (9) 1.2×10⁻⁴ M. Right inset: the linear plot of 1/(*F*-*F*₀) versus 1/[CD]. Left inset: the contrast fluorescence spectra of the following addition of 72 µL of DNA (1.44×10⁻⁵ M) in (A) α -CD (B) β -CD with a concentration of (8) 1.05×10⁻⁴ M; (9) 1.2×10⁻⁴ M (the dotted lines for DNA).

Figure S5. The fluoresence spectra of ATSPP **1** (1.2×10^{-6} M) in the pH 7.04 phosphate buffer solution containing various concentration of (A) α -CD (B) β -CD at 25 °C (excitation wavelength 423 nm). The concentration of CD is: (1) 0 M; (2) 1.5×10^{-5} M; (3) 3.0×10^{-5} M; (4) 4.5×10^{-5} M; (5) 6.0×10^{-5} M; (6) 7.5×10^{-5} M; (7) 9.0×10^{-5} M; (8) 1.05×10^{-4} M; (9) 1.2×10^{-4} M. Right inset: the linear plot of $1/(F-F_0)$ versus 1/[DNA]. Left inset: the contrast fluorescence spectra of the following addition of 72 µL of DNA (1.44×10^{-5} M) in (A) α -CD (B) β -CD with a concentration of (8) 1.05×10^{-4} M; (9) 1.2×10^{-4} M (the dotted lines for DNA).